Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Gastroenterology ; 161(1): 94-106, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33741316

RESUMO

BACKGROUND AND AIMS: Increasing evidence supports the role of early-life gut microbiota in developing atopic diseases, but ecological changes to gut microbiota during infancy in relation to food sensitization remain unclear. We aimed to characterize and associate these changes with the development of food sensitization in children. METHODS: In this observational study, using 16S rRNA amplicon sequencing, we characterized the composition of 2844 fecal microbiota in 1422 Canadian full-term infants. Atopic sensitization outcomes were measured by skin prick tests at age 1 year and 3 years. The association between gut microbiota trajectories, based on longitudinal shifts in community clusters, and atopic sensitization outcomes at age 1 and 3 years were determined. Ethnicity and early-life exposures influencing microbiota trajectories were initially examined, and post-hoc analyses were conducted. RESULTS: Four identified developmental trajectories of gut microbiota were shaped by birth mode and varied by ethnicity. The trajectory with persistently low Bacteroides abundance and high Enterobacteriaceae/Bacteroidaceae ratio throughout infancy increased the risk of sensitization to food allergens, particularly to peanuts at age 3 years by 3-fold (adjusted odds ratio [OR] 2.82, 95% confidence interval [CI] 1.13-7.01). A much higher likelihood for peanut sensitization was found if infants with this trajectory were born to Asian mothers (adjusted OR 7.87, 95% CI 2.75-22.55). It was characterized by a deficiency in sphingolipid metabolism and persistent Clostridioides difficile colonization. Importantly, this trajectory of depleted Bacteroides abundance mediated the association between Asian ethnicity and food sensitization. CONCLUSIONS: This study documented an association between persistently low gut Bacteroides abundance throughout infancy and sensitization to peanuts in childhood. It is the first to show a mediation role for infant gut microbiota in ethnicity-associated development of food sensitization.


Assuntos
Hipersensibilidade Alimentar/etnologia , Microbioma Gastrointestinal/imunologia , Povo Asiático , Canadá , Etnicidade , Fezes , Hipersensibilidade Alimentar/imunologia , Hipersensibilidade Alimentar/microbiologia , Humanos , Lactente
2.
PLoS Pathog ; 7(8): e1002130, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21901088

RESUMO

Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP) in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain.


Assuntos
Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Solanum lycopersicum/microbiologia , Fatores de Virulência/genética , Alelos , Primers do DNA , Europa (Continente) , Flagelina/genética , Flagelina/metabolismo , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Marcadores Genéticos , Mutação , América do Norte , Filogeografia , Imunidade Vegetal , Folhas de Planta , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
3.
Gut Microbes ; 12(1): 1799734, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32779963

RESUMO

In Canada and the US, the infant diet is supplemented with vitamin D via supplement drops or formula. Pregnant and nursing mothers often take vitamin D supplements. Since little is known about the impact of this supplementation on infant gut microbiota, we undertook a study to determine the association between maternal and infant vitamin D supplementation, infant gut microbiota composition and Clostridioides difficile colonization in 1,157 mother-infant pairs of the CHILD (Canadian Healthy Infant Longitudinal Development) Cohort Study over 2009-2012. Logistic and MaAsLin regression were employed to assess associations between vitamin D supplementation, and C. difficile colonization, or other gut microbiota, respectively. Sixty-five percent of infants received a vitamin D supplement. Among all infants, infant vitamin D supplementation was associated with a lower abundance of genus Megamonas (q = 0.01) in gut microbiota. Among those exclusively breastfed, maternal prenatal supplementation was associated with lower abundance of Bilophila (q = 0.01) and of Lachnospiraceae (q = 0.02) but higher abundance of Haemophilus (q = 0.02). There were no differences in microbiota composition with vitamin D supplementation among partially and not breastfed infants. Neither infant nor maternal vitamin D supplementation were associated with C. difficile colonization, after adjusting for breastfeeding status and other factors. However, maternal consumption of vitamin-D fortified milk reduced the likelihood of C. difficile colonization in infants (adjustedOR: 0.40, 95% CI: 0.19-0.82). The impact of this compositional difference on later childhood health, especially defense against viral respiratory infection, may go beyond the expected effects of vitamin D supplements and remains to be ascertained.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Vitamina D/farmacologia , Adulto , Clostridioides difficile/isolamento & purificação , Estudos de Coortes , Feminino , Firmicutes/efeitos dos fármacos , Firmicutes/isolamento & purificação , Microbioma Gastrointestinal/genética , Humanos , Lactente , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Vitamina D/administração & dosagem
4.
Front Immunol ; 10: 2866, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921134

RESUMO

Colonization with Clostridioides difficile occurs in up to half of infants under the age of 3 months, is strongly influenced by feeding modality and is largely asymptomatic. In spite of this, C. difficile's presence has been associated with susceptibility to chronic disease later in childhood, perhaps by promoting or benefiting from changes in infant gut microbiome development, including colonization with pathogenic bacteria and disrupted production of microbial bioactive metabolites and proteins. In this study, the microbiomes of 1554 infants from the CHILD Cohort Study were described according to C. difficile colonization status and feeding mode at 3-4 months of age. C. difficile colonization was associated with a different gut microbiome profile in exclusively breastfed (EBF) vs. exclusively formula fed (EFF) infants. EBF infants colonized with C. difficile had an increased relative abundance of Firmicutes and Proteobacteria, decreased relative abundance of Bifidobacteriaceae, greater microbiota alpha-diversity, greater detectable fecal short chain fatty acids (SCFA), and lower detectable fecal secretory Immunoglobulin A (sIgA) than those not colonized. Similar but less pronounced differences were seen among partially breastfed infants (PBF) but EFF infants did not possess these differences in the gut microbiome according to colonization status. Thus, breastfed infants colonized with C. difficile appear to possess a gut microbiome that differs from non-colonized infants and resembles that of EFF infants, but the driving force and direction of this association remains unknown. Understanding these compositional differences as drivers of C. difficile colonization may be important to ensure future childhood health.


Assuntos
Aleitamento Materno , Clostridioides difficile/imunologia , Enterocolite Pseudomembranosa/imunologia , Enterocolite Pseudomembranosa/mortalidade , Microbioma Gastrointestinal/imunologia , Clostridioides difficile/patogenicidade , Enterocolite Pseudomembranosa/patologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA