Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytother Res ; 38(6): 2641-2655, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38488442

RESUMO

Insufficient vessel maintenance adversely impacts patients in terms of tissue reperfusion following stroke or myocardial infarction, as well as during wound healing. Angiogenesis impairment is a feature typical of metabolic disorders acting at the cardiovascular level, such as diabetes. Therapeutic angiogenesis regulation offers promising clinical implications, and natural compounds as pro-angiogenic nutraceuticals hold valuable applications in regenerative medicine. By using cultured endothelial cells from human umbilical veins (HUVEC) we studied functional and molecular responses following exposure to erucin, a natural isothiocyanate derived from Brassicaceae plants and extracted from the seeds of rocket. Erucin (at nanomolar concentrations) promotes cell migration and tube formation, similar to vascular endothelial growth factor (VEGF), through mobilizing paxillin at endothelial edges. At the molecular level, erucin induces signaling pathways typical of angiogenesis activation, namely Ras, PI3K/AKT, and ERK1/2, leading to VEGF expression and triggering its autocrine production, as pharmacological inhibition of soluble VEGF and VEGFR2 dampens endothelial functions. Furthermore, erucin, alone and together with VEGF, preserves endothelial angiogenic functions under pathological conditions, such as those induced in HUVEC by high glucose (HG) exposure. Erucin emerges as a compelling candidate for therapeutic revascularization applications, showcasing promising prospects for natural compounds in regenerative medicine, particularly in addressing angiogenesis-related disorders.


Assuntos
Movimento Celular , Glucose , Células Endoteliais da Veia Umbilical Humana , Isotiocianatos , Fator A de Crescimento do Endotélio Vascular , Humanos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Isotiocianatos/farmacologia , Movimento Celular/efeitos dos fármacos , Paxilina/metabolismo , Indutores da Angiogênese/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Brassicaceae/química , Neovascularização Fisiológica/efeitos dos fármacos , Sulfetos , Tiocianatos
2.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430601

RESUMO

This study is preliminary to an experiment to be performed onboard the International Space Station (ISS) and on Earth to investigate how low gravity influences the healing of sutured human skin and vein wounds. Its objective was to ascertain whether these tissue explants could be maintained to be viable ex vivo for long periods of time, mimicking the experimental conditions onboard the ISS. We developed an automated tissue culture chamber, reproducing and monitoring the physiological tensile forces over time, and a culture medium enriched with serelaxin (60 ng/mL) and (Zn(PipNONO)Cl) (28 ng/mL), known to extend viability of explanted organs for transplantation. The results show that the human skin and vein specimens remained viable for more than 4 weeks, with no substantial signs of damage in their tissues and cells. As a further clue about cell viability, some typical events associated with wound repair were observed in the tissue areas close to the wound, namely remodeling of collagen fibers in the papillary dermis and of elastic fibers in the vein wall, proliferation of keratinocyte stem cells, and expression of the endothelial functional markers eNOS and FGF-2. These findings validate the suitability of this new ex vivo organ culture system for wound healing studies, not only for the scheduled space experiment but also for applications on Earth, such as drug discovery purposes.


Assuntos
Pele , Cicatrização , Humanos , Pele/metabolismo , Suturas , Queratinócitos/fisiologia , Procedimentos Neurocirúrgicos
3.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555238

RESUMO

Vascular inflammation (VI) represents a pathological condition that progressively affects the integrity and functionality of the vascular wall, thus leading to endothelial dysfunction and the onset of several cardiovascular diseases. Therefore, the research of novel compounds able to prevent VI represents a compelling need. In this study, we tested erucin, the natural isothiocyanate H2S-donor derived from Eruca sativa Mill. (Brassicaceae), in an in vivo mouse model of lipopolysaccharide (LPS)-induced peritonitis, where it significantly reduced the amount of emigrated CD11b positive neutrophils. We then evaluated the anti-inflammatory effects of erucin in LPS-challenged human umbilical vein endothelial cells (HUVECs). The pre-incubation of erucin, before LPS treatment (1, 6, 24 h), significantly preserved cell viability and prevented the increase of reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF-α) levels. Moreover, erucin downregulated endothelial hyperpermeability and reduced the loss of vascular endothelial (VE)-Cadherin levels. In addition, erucin decreased vascular cell adhesion molecule 1 (VCAM-1), cyclooxygenase-2 (COX-2) and microsomal prostaglandin E-synthase 1 (mPGES-1) expression. Of note, erucin induced eNOS phosphorylation and counteracted LPS-mediated NF-κB nuclear translocation, an effect that was partially abolished in the presence of the eNOS inhibitor L-NAME. Therefore, erucin can control endothelial function through biochemical and genomic positive effects against VI.


Assuntos
Endotélio Vascular , Transdução de Sinais , Humanos , Camundongos , Animais , Endotélio Vascular/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo
4.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925533

RESUMO

Microgravity-induced bone loss is currently a significant and unresolved health risk for space travelers, as it raises the likelihood for irreversible changes that weaken skeletal integrity and the incremental onset of fracture injuries and renal stone formation. Another issue related to bone tissue homeostasis in microgravity is its capacity to regenerate following fractures due to weakening of the tissue and accidental events during the accomplishment of particularly dangerous tasks. Today, several pharmacological and non-pharmacological countermeasures to this problem have been proposed, including physical exercise, diet supplements and administration of antiresorptive or anabolic drugs. However, each class of pharmacological agents presents several limitations as their prolonged and repeated employment is not exempt from the onset of serious side effects, which limit their use within a well-defined range of time. In this review, we will focus on the various countermeasures currently in place or proposed to address bone loss in conditions of microgravity, analyzing in detail the advantages and disadvantages of each option from a pharmacological point of view. Finally, we take stock of the situation in the currently available literature concerning bone loss and fracture healing processes. We try to understand which are the critical points and challenges that need to be addressed to reach innovative and targeted therapies to be used both in space missions and on Earth.


Assuntos
Osso e Ossos/metabolismo , Ausência de Peso/efeitos adversos , Doenças Ósseas Metabólicas/metabolismo , Cálcio , Exercício Físico/fisiologia , Humanos , Voo Espacial
5.
Pharmacol Res ; 159: 104964, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32485281

RESUMO

The vascular endothelium is one of the first barriers encountered by drugs and xenobiotics, which, once administered, enter the blood stream and diffuse to all organs through blood vessels. The continuous exposure of endothelial cells to drugs and chemical compounds turns out to be a huge risk for the cardiovascular system, as these substances could compromise endothelial vitality and function and create irreparable, localized or systemic damages. For this reason, a special attention should be paid to the safety of developing drugs on the cardiovascular system. In this study we focused our attention on carbonic anhydrase (CA)-IX inhibitors. CA-IX is an enzyme over-expressed in tumor cells in response to hypoxia, which is involved in pH control of the neoplastic mass microenvironment and in tumor progression. Specifically, we evaluated the safety on human umbilical vein endothelial cells (HUVEC) of CA-IX inhibitor AA-06-05, compared to its lead compound SLC-0111, for which the efficacy on tumor cells has already been proven. In this analysis we detected an impairment in viability and mitochondrial metabolism of HUVECs treated with AA-06-05 (but not with SLC-0111) in the concentration range 1-10 µM. These data were accompanied by an increase in the expression of the cell cycle negative regulator, p21, and a down-regulation of the pro-survival proteins ERK1/2 and AKT, both in their phosphorylated and total forms. The data obtained document the likelihood for CA-IX inhibitor AA-06-05 to be developed as new anticancer drug, but a particular attention should be paid to its potential side effects on endothelial cells due to its targeting on other CA isoforms as CA-I, with ubiquitous localization and physiological significance.


Assuntos
Antineoplásicos/farmacologia , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Sulfonamidas/farmacologia , Antígenos de Neoplasias/metabolismo , Antineoplásicos/toxicidade , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/toxicidade , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Compostos de Fenilureia/toxicidade , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sulfonamidas/toxicidade , Fator A de Crescimento do Endotélio Vascular/farmacologia
6.
Eur J Nutr ; 59(2): 517-527, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30725211

RESUMO

PURPOSE: Endothelial-to-mesenchymal transition (EndMT) plays an important role in pathogenesis of a number of inflammatory diseases. Hydroxytyrosol (HT) and, particularly, its major plasma metabolite HT-3O sulfate (HT-3Os) are known olive oil antioxidant and anti-inflammatory polyphenols which exert benefits against vascular diseases by improving endothelial function. However, to date the HT-3Os role in EndMT is not well known. METHODS: To investigate the HT-3Os effects on EndMT in the inflamed endothelium, we used an in vitro model of endothelial dysfunction, challenging endothelial cells (EC), human umbilical EC (HUVEC) and human retinal EC (HREC) with Interleukin-1ß (IL-1ß), an inflammatory agent. HREC were used as a specific model to investigate HT-3Os effects on vascular retinal diseases. RESULTS: We found that IL-1ß treatment-induced EndMT phenotype in both cell models, also changing cell morphology. HT-3Os protected EC against IL-1ß effects, recovering cell morphology and phenotype. Mechanistically, HT-3Os targeting fibroblast growth factor receptor 1 FGFR1 expression and let-7 miRNA, controlled transforming growth factor beta (TGF-ß) signalling in EC, downregulating transcription factors expression (SNAI1 and ZEB2) and gene expression of late EndMT markers (FN1, VIM, NOTCH3, CNN1, MMP2 and MMP9). CONCLUSION: These results demonstrate that HT-3Os blunts pathological EndMT in inflamed EC, maintaining high let-7 miRNA expression and preventing activation of TGF-ß signalling.


Assuntos
Endotélio/efeitos dos fármacos , Endotélio/fisiopatologia , Inflamação/fisiopatologia , Mesoderma/efeitos dos fármacos , Mesoderma/fisiopatologia , Álcool Feniletílico/análogos & derivados , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Células Cultivadas , Técnicas In Vitro , Álcool Feniletílico/farmacologia , Sulfatos
7.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340282

RESUMO

Carbonic anhydrase IX (CA-IX) plays a pivotal role in regulation of pH in tumor milieu catalyzing carbonic acid formation by hydrating CO2. An acidification of tumor microenvironment contributes to tumor progression via multiple processes, including reduced cell-cell adhesion, increased migration and matrix invasion. We aimed to assess whether the pharmacological inhibition of CA-IX could impair tumor cell proliferation and invasion. Tumor epithelial cells from breast (MDA-MB-231) and lung (A549) cancer were used to evaluate the cytotoxic effect of sulfonamide CA-IX inhibitors. Two CA-IX enzyme blockers were tested, SLC-0111 (at present in phase Ib clinical trial) and AA-06-05. In these cells, the drugs inhibited cell proliferation, migration and invasion through shifting of the mesenchymal phenotype toward an epithelial one and by impairing matrix metalloprotease-2 (MMP-2) activity. The antitumor activity was elicited via apoptosis pathway activation. An upregulation of p53 was observed, which in turn regulated the activation of caspase-3. Inhibition of proteolytic activity was accompanied by upregulation of the endogenous tissue inhibitor TIMP-2. Collectively, these data confirm the potential use of CA-IX inhibitors, and in particular SLC-0111 and AA-06-05, as agents to be further developed, alone or in combination with other conventional anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Apoptose/efeitos dos fármacos , Anidrase Carbônica IX/genética , Anidrase Carbônica IX/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Expressão Gênica , Humanos , Isoenzimas , Metaloproteinase 2 da Matriz
8.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936443

RESUMO

Wound healing is a very complex process that allows organisms to survive injuries. It is strictly regulated by a number of biochemical and physical factors, mechanical forces included. Studying wound healing in space is interesting for two main reasons: (i) defining tools, procedures, and protocols to manage serious wounds and burns eventually occurring in future long-lasting space exploration missions, without the possibility of timely medical evacuation to Earth; (ii) understanding the role of gravity and mechanical factors in the healing process and scarring, thus contributing to unravelling the mechanisms underlying the switching between perfect regeneration and imperfect repair with scarring. In the study presented here, a new in vivo sutured wound healing model in the leech (Hirudo medicinalis) has been used to evaluate the effect of unloading conditions on the healing process and the effectiveness of platelet rich plasma (PRP) as a countermeasure. The results reveal that microgravity caused a healing delay and structural alterations in the repair tissue, which were prevented by PRP treatment. Moreover, investigating the effects of microgravity and PRP on an in vitro wound healing model, it was found that PRP is able to counteract the microgravity-induced impairment in fibroblast migration to the wound site. This could be one of the mechanisms underlying the effectiveness of PRP in preventing healing impairment in unloading conditions.


Assuntos
Modelos Biológicos , Plasma Rico em Plaquetas/metabolismo , Ausência de Peso , Cicatrização , Animais , Contagem de Células , Movimento Celular/genética , Colágeno/metabolismo , Elasticidade , Regulação da Expressão Gênica , Sanguessugas/fisiologia , Camundongos , Células NIH 3T3 , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Prostaglandins Other Lipid Mediat ; 143: 106344, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31207300

RESUMO

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) as gefitinib are standard treatment of non-small cell lung cancer (NSCLC), but resistance often occurs. This study demonstrates that NSCLC cells resistant to gefitinib (GR cells) displayed a significantly higher microsomal prostaglandin E synthase-1 (mPGES-1) expression and activity than parental cells. Overexpression of mPGES-1/prostaglandin E-2 (PGE-2) signaling in GR cells was associated with acquisition of mesenchymal and stem-like cell properties, nuclear EGFR translocation and tolerance to cisplatin. mPGES-1 inhibition reduced mesenchymal and stem-like properties, and nuclear EGFR translocation in GR cells. Consistently, inhibition of mPGES-1 activity enhanced sensitivity to cisplatin and responsiveness to gefitinib in GR cells. We propose the mPGES-1/PGE-2 signaling as a potential target for treating aggressive and resistant lung cancers.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos , Gefitinibe/farmacologia , Neoplasias Pulmonares/patologia , Terapia de Alvo Molecular , Prostaglandina-E Sintases/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Dinoprostona/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores ErbB/metabolismo , Inativação Gênica , Humanos , Prostaglandina-E Sintases/deficiência , Prostaglandina-E Sintases/genética , Transdução de Sinais/efeitos dos fármacos
10.
Molecules ; 24(21)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694161

RESUMO

Cardiovascular functionality strictly depends on endothelial cell trophism and proper biochemical function. Any condition (environmental, pharmacological/toxicological, physical, or neuro-humoral) that changes the vascular endothelium has great consequences for the organism's wellness and on the outcome and evolution of severe cardiovascular pathologies. Thus, knowledge of the mechanisms, both endogenous and external, that affect endothelial dysfunction is pivotal to preventing and treating these disorders. In recent decades, significant attention has been focused on gut microbiota and how these symbiotic microorganisms can influence host health and disease development. Indeed, dysbiosis has been reported to be at the base of a range of different pathologies, including pathologies of the cardiovascular system. The study of the mechanism underlying this relationship has led to the identification of a series of metabolites (released by gut bacteria) that exert different effects on all the components of the vascular system, and in particular on endothelial cells. The imbalance of factors promoting or blunting endothelial cell viability and function and angiogenesis seems to be a potential target for the development of new therapeutic interventions. This review highlights the circulating factors identified to date, either directly produced by gut microbes or resulting from the metabolism of diet derivatives as polyphenols.


Assuntos
Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Microbioma Gastrointestinal/fisiologia , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Sobrevivência Celular/fisiologia , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Humanos
11.
J Cell Sci ; 129(21): 4091-4104, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27656109

RESUMO

Endocytosis plays a crucial role in receptor signalling. VEGFR2 (also known as KDR) and its ligand VEGFA are fundamental in neovascularisation. However, our understanding of the role of endocytosis in VEGFR2 signalling remains limited. Despite the existence of diverse internalisation routes, the only known endocytic pathway for VEGFR2 is the clathrin-mediated pathway. Here, we show that this pathway is the predominant internalisation route for VEGFR2 only in the absence of ligand. Intriguingly, VEGFA induces a new internalisation itinerary for VEGFR2, the pathway of macropinocytosis, which becomes the prevalent endocytic route for the receptor in the presence of ligand, whereas the contribution of the clathrin-mediated route becomes minor. Macropinocytic internalisation of VEGFR2, which mechanistically is mediated through the small GTPase CDC42, takes place through macropinosomes generated at ruffling areas of the membrane. Interestingly, macropinocytosis plays a crucial role in VEGFA-induced signalling, endothelial cell functions in vitro and angiogenesis in vivo, whereas clathrin-mediated endocytosis is not essential for VEGFA signalling. These findings expand our knowledge on the endocytic pathways of VEGFR2 and suggest that VEGFA-driven internalisation of VEGFR2 through macropinocytosis is essential for endothelial cell signalling and angiogenesis.


Assuntos
Neovascularização Fisiológica , Pinocitose , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Clatrina/metabolismo , Dinaminas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/ultraestrutura , Humanos , Modelos Biológicos , Proteína cdc42 de Ligação ao GTP/metabolismo
12.
Int J Mol Sci ; 19(2)2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29360776

RESUMO

The identification of components of the kallikrein-kinin system in the vitreous from patients with microvascular retinal diseases suggests that bradykinin (BK) signaling may contribute to pathogenesis of retinal vascular complications. BK receptor 2 (B2R) signaling has been implicated in both pro-inflammatory and pro-angiogenic effects promoted by BK. Here, we investigated the role of BK/B2R signaling in the retinal neovascularization in the oxygen-induced retinopathy (OIR) model. Blockade of B2R signaling by the antagonist fasitibant delayed retinal vascularization in mouse pups, indicating that the retinal endothelium is a target of the BK/B2R system. In the rabbit cornea assay, a model of pathological neoangiogenesis, the B2 agonist kallidin induced vessel sprouting and promoted cornea opacity, a sign of edema and tissue inflammation. In agreement with these results, in the OIR model, a blockade of B2R signaling significantly reduced retinal neovascularization, as determined by the area of retinal tufts, and, in the retinal vessel, it also reduced vascular endothelial growth factor and fibroblast growth factor-2 expression. All together, these findings show that B2R blockade reduces retinal neovascularization and inhibits the expression of proangiogenic and pro-inflammatory cytokines, suggesting that targeting B2R signaling may be an effective strategy for treating ischemic retinopathy.


Assuntos
Estresse Oxidativo , Receptor B2 da Bradicinina/genética , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Neovascularização Retiniana/genética , Animais , Bradicinina/metabolismo , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Córnea/efeitos dos fármacos , Córnea/metabolismo , Córnea/patologia , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Camundongos , Modelos Biológicos , Ornitina/análogos & derivados , Ornitina/farmacologia , Coelhos , Receptor B2 da Bradicinina/metabolismo , Doenças Retinianas/patologia , Neovascularização Retiniana/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia
13.
Molecules ; 23(10)2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340320

RESUMO

The term of angiogenesis refers to the growth of new vessels from pre-existing capillaries. The phenomenon is necessary for physiological growth, repair and functioning of our organs. When occurring in a not regulated manner, it concurs to pathological conditions as tumors, eye diseases, chronic degenerative disorders. On the contrary insufficient neovascularization or endothelial disfunction accompanies ischemic and metabolic disorders. In both the cases an inflammatory and oxidative condition exists in supporting angiogenesis deregulation and endothelial dysfunction. The use of nutraceuticals with antioxidant and anti-inflammatory activities can be a therapeutic option to maintain an adequate vascularization and endothelial cell proper functioning or to blunt aberrant angiogenesis. A revision of the updated literature reports on nutraceuticals to guide endothelial cell wellness and to restore physiological tissue vascularization is the objective of this paper. The critical aspects as well as lacking data for human use will be explored from a pharmacological perspective.


Assuntos
Antioxidantes/uso terapêutico , Suplementos Nutricionais , Neovascularização Patológica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/química , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Oftalmopatias/tratamento farmacológico , Oftalmopatias/patologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neovascularização Patológica/patologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia
14.
Pharmacol Res ; 119: 227-236, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28193521

RESUMO

Colorectal cancer (CRC) is a major health problem in Western countries. The endocannabinoid 2-arachidonoyl-glycerol (2-AG) exerts antiproliferative actions in a number of tumoral cell lines, including CRC cells. Monoacylglycerol lipase (MAGL), a serine hydrolase that inactivates 2-AG, is highly expressed in aggressive human cancer cells. Here, we investigated the role of MAGL in experimental colon carcinogenesis. The role of MAGL was assessed in vivo by using the xenograft and the azoxymethane models of colon carcinogenesis; MAGL expression was evaluated by RT-PCR and immunohistochemistry; 2-AG levels were measured by liquid chromatography mass spectrometry; angiogenesis was evaluated in tumor tissues [by microvessel counting and by investigating the expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) proteins] as well as in human umbilical vein endothelial cells (HUVEC); cyclin D1 was evaluated by RT-PCR. MAGL and 2-AG were strongly expressed in tumor tissues. The MAGL inhibitor URB602 reduced xenograft tumor volume, this effect being associated to down-regulation of VEGF and FGF-2, reduction in the number of vessels and down-regulation of cyclin D1. In HUVEC, URB602 exerted a direct antiangiogenic effect by inhibiting FGF-2 induced proliferation and migration, and by modulating pro/anti-angiogenic agents. In experiments aiming at investigating the role of MAGL in chemoprevention, URB602 attenuated azoxymethane-induced preneoplastic lesions, polyps and tumors. MAGL, possibly through modulation of angiogenesis, plays a pivotal role in experimental colon carcinogenesis. Pharmacological inhibition of MAGL could represent an innovative therapeutic approach to reduce colorectal tumor progression.


Assuntos
Antineoplásicos/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Colo/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Monoacilglicerol Lipases/antagonistas & inibidores , Reto/efeitos dos fármacos , Inibidores da Angiogênese/uso terapêutico , Animais , Ácidos Araquidônicos/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Colo/irrigação sanguínea , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação para Baixo/efeitos dos fármacos , Endocanabinoides/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicerídeos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos Endogâmicos ICR , Camundongos Nus , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Reto/irrigação sanguínea , Reto/metabolismo , Reto/patologia
15.
J Vasc Res ; 53(5-6): 255-268, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27923233

RESUMO

Lymphatic leakage can be seen as a detrimental phenomenon associated with fluid retention and deposition as well as gain of weight. Moreover, lymphatic dysfunction is associated with an inflammatory environment and can be a substrate for other health conditions. A number of treatments can ameliorate lymphatic vasculature: natural substances have been used as treatment options particularly suitable for their consolidated effectiveness and safety profile. Here we report the protective effect of AdipoDren®, an association of a series of plant-derived natural complexes, on lymphatic endothelium permeability promoted by interleukin-1 beta (IL-1ß) and the associated molecular mechanisms. AdipoDren® demonstrated a protective effect on dermal lymphatic endothelial cell permeability increased by IL-1ß. Reduced permeability was due to the maintenance of tight junctions and cell-cell localisation of occludin and zonula occludens-1 (ZO-1). Moreover, AdipoDren® reduced the expression of the inflammatory key element cyclooxygenase-2 (COX-2), while not altering the levels of endothelial and inducible nitric oxide synthases (eNOS and iNOS). The upregulation of antioxidant enzymatic systems (catalase and superoxide dismutase-1, SOD-1) and the downregulation of pro-oxidant markers (p22 phox subunit of NADPH oxidase) were also evident. In conclusion, AdipoDren® would be useful to ameliorate conditions of altered lymphatic vasculature and to support the physiological functionality of the lymphatic endothelium.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Endotélio Linfático/efeitos dos fármacos , Interleucina-1beta/farmacologia , Linfedema/tratamento farmacológico , Extratos Vegetais/farmacologia , Preparações de Plantas/farmacologia , Junções Íntimas/efeitos dos fármacos , Catalase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Endotélio Linfático/metabolismo , Endotélio Linfático/fisiopatologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Linfedema/metabolismo , Linfedema/fisiopatologia , NADPH Oxidases/metabolismo , Ocludina/metabolismo , Rutina/farmacologia , Superóxido Dismutase-1/metabolismo , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
16.
Pharmacol Res ; 111: 384-393, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27402192

RESUMO

Angiogenesis, the formation of new blood-vessel, is crucial in the pathogenesis of several diseases, and thus represents a druggable target for the prevention and treatment of different disorders. It is nowadays well kwon how diet can control cancer development and progression, and how the use of certain diet components can prevent cancer development. Several studies, also from our lab, now indicate that natural plant products including nutraceuticals modulate tumor angiogenesis. In this review, it is reported how phytochemicals, comprising hydroxytyrosol, resveratrol, genistein, curcumin, and the green tea component epigallocatechin-3-gallate among the others, negatively regulate angiogenesis. A single plant-derived compound may affect both endothelial and tumor cells, with the common denominator of anti-inflammatory and radical scavenger activities. Beside these positive features, documented in cellular and animal models, a series of critical issues should be considered from a pharmacological point of view as: what is the best source of bioactive compounds: food and beverages, extracted phytocomplexes, isolated nutraceuticals or synthetic analogues? How is the bioavailability of the compounds of interest in relation to the above source? Is there any biological activity by circulating metabolic derivatives? What is the best formulation, administration route and posology? How safe are in humans? How strong and reliable are the clinical trials designed for their use alone or in combination with conventional chemotherapy? After a dissertation of these critical points, the conclusion can be drawn that novel and effective strategies should be optimized to improve their bioavailability and efficacy, considering their exploitation as chemopreventive and/or curative approaches.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Suplementos Nutricionais , Neoplasias/tratamento farmacológico , Neovascularização Patológica , Neovascularização Fisiológica/efeitos dos fármacos , Polifenóis/uso terapêutico , Inibidores da Angiogênese/efeitos adversos , Animais , Suplementos Nutricionais/efeitos adversos , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Polifenóis/efeitos adversos
17.
Pharmacol Res ; 113(Pt A): 426-437, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27650753

RESUMO

Cardiovascular diseases as atherosclerosis are associated to an inflammatory state of the vessel wall which is accompanied by endothelial dysfunction, and adherence and activation of circulating inflammatory cells. Hydrogen sulfide, a novel cardiovascular protective gaseous mediator, has been reported to exert anti-inflammatory activity. We have recently demonstrated that the SH containing ACE inhibitor zofenoprilat, the active metabolite of zofenopril, controls the angiogenic features of vascular endothelium through H2S enzymatic production by cystathionine gamma lyase (CSE). Based on H2S donor/generator property of zofenoprilat, the objective of this study was to evaluate whether zofenoprilat exerts anti-inflammatory activity in vascular cells through its ability to increase H2S availability. Here we found that zofenoprilat, in a CSE/H2S-mediated manner, abolished all the inflammatory features induced by interlukin-1beta (IL-1ß) in human umbilical vein endothelial cells (HUVEC), especially the NF-κB/cyclooxygenase-2 (COX-2)/prostanoid biochemical pathway. The pre-incubation with zofenoprilat/CSE dependent H2S prevented IL-1ß induced paracellular hyperpermeability through the control of expression and localization of cell-cell junctional markers ZO-1 and VE-cadherin. Moreover, zofenoprilat/CSE dependent H2S reduced the expression of the endothelial markers CD40 and CD31, involved in the recruitment of circulating mononuclear cells and platelets. Interestingly, this anti-inflammatory activity was also confirmed in vascular smooth muscle cells and fibroblasts as zofenoprilat reduced, in both cell lines, proliferation, migration and COX-2 expression induced by IL-1ß, but independently from the SH moiety and H2S availability. These in vitro data document the anti-inflammatory activity of zofenoprilat on vascular cells, reinforcing the cardiovascular protective effect of this multitasking drug.


Assuntos
Anti-Inflamatórios/farmacologia , Captopril/análogos & derivados , Endotélio Vascular/efeitos dos fármacos , Sulfeto de Hidrogênio/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antígenos CD/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Antígenos CD40/metabolismo , Caderinas/metabolismo , Captopril/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Cistationina gama-Liase/metabolismo , Endotélio Vascular/metabolismo , Fibroblastos/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-1beta/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Miócitos de Músculo Liso/metabolismo , NF-kappa B/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Pharmacol Res ; 107: 352-359, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27063892

RESUMO

The nickel-piperazine/NO donor compound, Ni(PipNONO)Cl, belonging to the family of compounds labelled as "metal-nonoates", due to its promising vasodilating activity, has been considered as a potential drug candidate in anti-hypertensive therapy. Drug efficacy has been evaluated in spontaneously hypertensive rats (SHR) in comparison with normotensive animals (C57BL/6 mice and WKY rats). In normotensive animals the metal-nonoate maintained blood pressure at basal level both following acute administration and after 30 days of treatment. In SHR, Ni(PipNONO)Cl reduced blood pressure in the dose range of 3-10mg/kg. When compared with a commercial NONOate, DETA/NO, used at the same doses, Ni(PipNONO)Cl was more active in reducing blood pressure in SHR than DETA/NO in the first two weeks, while the effect of the two molecules was similar in the third and fourth week. The degradation and control compound Ni(Pip)Cl2 had no effect on blood pressure and heart rate in same animal models. Remarkably, the blood pressure reduction induced by the new NO-donor Ni(PipNONO)Cl does not evoke changes in the heart rate and tolerance. Considering the mechanisms of vascular protection, 30 days of administration of Ni(PipNONO)Cl improved endothelial function in SHR by upregulating endothelial NO synthase (eNOS) through increased eNOS protein levels and downregulated Caveolin-1 (Cav-1), and by increasing superoxide dismutase 1 (SOD1) protein level in aortae. In cultured endothelial cells Ni(PipNONO)Cl restored the cell functions (cytoskeletal protein expression, migration and proliferation) altered by the inflammatory mediator interleukin-1ß (IL-1ß), impairing the endothelial to mesenchimal transition. In conclusion, Ni(PipNONO)Cl maintained unaltered blood pressure in normotensive mice and rats, and it exerted anti-hypertensive effect in SHR through the restoration of vascular endothelial protective functions.


Assuntos
Anti-Hipertensivos/uso terapêutico , Hipertensão/tratamento farmacológico , Níquel/uso terapêutico , Doadores de Óxido Nítrico/uso terapêutico , Piperazinas/uso terapêutico , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Frequência Cardíaca/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Hipertensão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
19.
Pharmacol Res ; 99: 162-73, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26094781

RESUMO

In the brain, NO is a very important molecule in the regulation of cerebral and extra cerebral cranial blood flow and arterial diameters. It is also importantly involved in many neuronal functions and innumerable roles of NO in many brain related disorders including epilepsy, schizophrenia, drug addiction, anxiety, major depression, have been postulated. The present study aimed to explore the neuronal role exerted by the metal-nonoate compound Ni(PipNONO)Cl, a novel NO donor whose vascular protective effects have been recently demonstrated. Ni(PipNONO)Cl showed antidepressant-like properties in the tail suspension test and antiamnesic activity in the passive avoidance test in the absence of any hypernociceptive response to a mechanical stimulus. These effects were related to the NO-releasing properties of the compound within the central nervous system as demonstrated by the increase of iNOS levels in the brain, spinal cord and dura mater. The modulation of neuronal functions appeared after acute and repeated treatment, showing the lack of any tolerance to neuronal effects. At the dose used (10 mg/kg i.p.), Ni(PipNONO)Cl did not induce any visible sign of toxicity and experiments were performed in the absence of locomotor impairments. In addition to the NO-related neuronal activities of Ni(PipNONO)Cl, the decomposition control compound Ni(Pip)Cl2 showed anxiogenic-like and procognitive effects. The present findings showed neuronal modulatory activity of Ni(PipNONO)Cl through a NO-mediated mechanism. The activities of the decomposition compound Ni(Pip)Cl2 attributed to Ni(PipNONO)Cl the capability to modulate additional neuronal functions independently from NO releasing properties extending and improving the therapeutic perspectives of the NO donor.


Assuntos
Neurônios/efeitos dos fármacos , Níquel/administração & dosagem , Doadores de Óxido Nítrico/administração & dosagem , Piperazinas/administração & dosagem , Animais , Ansiolíticos/administração & dosagem , Antidepressivos/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/fisiologia , Humanos , Locomoção/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Neurônios/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Limiar da Dor/efeitos dos fármacos , Proteína Quinase C-épsilon/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
20.
J Pharmacol Exp Ther ; 351(3): 500-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25238748

RESUMO

At the cardiovascular level, nitric oxide (NO) controls smooth muscle functions, maintains vascular integrity, and exerts an antihypertensive effect. Metal-nonoates are a recently discovered class of NO donors, with NO release modulated through the complexation of the N-aminoethylpiperazine N-diazeniumdiolate ligand to metal ions, and thus representing a significant innovation with respect to the drugs traditionally used. In this study, we characterized the vascular protective effects of the most effective compound of this class, Ni(PipNONO)Cl, compared with the commercial N-diazeniumdiolate group derivate, diethylenetriamine/nitric oxide (DETA/NO). Ni(PipNONO)Cl induced a concentration-dependent relaxation of precontracted rat aortic rings. The ED50 was 0.67 µM, compared with 4.3 µM obtained with DETA/NO. When tested on cultured microvascular endothelial cells, Ni(PipNONO)Cl exerted a protective effect on the endothelium, promoting cell proliferation and survival in the picomolar range. The administration of Ni(PipNONO)Cl to vascular smooth muscle cells reduced the cell number, promoting their apoptosis at a high concentration (10 µM). Inhibition of smooth muscle cell migration, a hallmark of atherosclerosis, was accompanied by cytoskeletal rearrangement and loss of lamellipodia. When added to isolated platelets, Ni(PipNONO)Cl significantly reduced ADP-induced aggregation. Since atherosclerosis is accompanied by an inflammatory environment, cultured endothelial cells were exposed to interleukin (IL)-1ß. In the presence of IL-1ß, Ni(PipNONO)Cl inhibited cyclooxygenase-2 and inducible nitric oxide synthase upregulation, and reduced endothelial permeability and the platelet and monocyte adhesion markers CD31 and CD40 at the plasma membrane. Overall, these data indicate that Ni(PipNONO)Cl exerts vascular protective effects relevant for vascular dysfunction and prevention of atherosclerosis and thrombosis.


Assuntos
Cardiotônicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Animais , Aorta Torácica/citologia , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/fisiologia , Cardiotônicos/química , Proliferação de Células/fisiologia , Relação Dose-Resposta a Droga , Endotélio Vascular/fisiologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Masculino , Músculo Liso Vascular/fisiologia , Doadores de Óxido Nítrico/química , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA