Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(8): 1293-1307, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-34726235

RESUMO

Spinal muscular atrophy with respiratory distress type I (SMARD1) is a neurodegenerative disease defined by respiratory distress, muscle atrophy and sensory and autonomic nervous system defects. SMARD1 is a result of mutations within the IGHMBP2 gene. We have generated six Ighmbp2 mouse models based on patient-derived mutations that result in SMARD1 and/or Charcot-Marie Tooth Type 2 (CMT2S). Here we describe the characterization of one of these models, Ighmbp2D564N (human D565N). The Ighmbp2D564N/D564N mouse model mimics important aspects of the SMARD1 disease phenotype, including motor neuron degeneration and muscle atrophy. Ighmbp2D564N/D564N is the first SMARD1 mouse model to demonstrate respiratory defects based on quantified plethysmography analyses. SMARD1 disease phenotypes, including the respiratory defects, are significantly diminished by intracerebroventricular (ICV) injection of ssAAV9-IGHMBP2 and the extent of phenotypic restoration is dose-dependent. Collectively, this model provides important biological insight into SMARD1 disease development.


Assuntos
Atrofia Muscular Espinal , Doenças Neurodegenerativas , Animais , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Humanos , Camundongos , Atrofia Muscular , Atrofia Muscular Espinal/genética , Mutação , Síndrome do Desconforto Respiratório do Recém-Nascido , Fatores de Transcrição/genética
2.
Biochem Biophys Res Commun ; 530(1): 107-114, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828271

RESUMO

Spinal Muscular Atrophy (SMA) is an autosomal recessive neuromuscular disease caused by deletions or mutations in the survival motor neuron (SMN1) gene. An important hallmark of disease progression is the pathology of neuromuscular junctions (NMJs). Affected NMJs in the SMA context exhibit delayed maturation, impaired synaptic transmission, and loss of contact between motor neurons and skeletal muscle. Protection and maintenance of NMJs remains a focal point of therapeutic strategies to treat SMA, and the recent implication of the NMJ-organizer Agrin in SMA pathology suggests additional NMJ organizing molecules may contribute. DOK7 is an NMJ organizer that functions downstream of Agrin. The potential of DOK7 as a putative therapeutic target was demonstrated by adeno-associated virus (AAV)-mediated gene therapy delivery of DOK7 in Amyotrophic Lateral Sclerosis (ALS) and Emery Dreyefuss Muscular Dystrophy (EDMD). To assess the potential of DOK7 as a disease modifier of SMA, we administered AAV-DOK7 to an intermediate mouse model of SMA. AAV9-DOK7 treatment conferred improvements in NMJ architecture and reduced muscle fiber atrophy. Additionally, these improvements resulted in a subtle reduction in phenotypic severity, evidenced by improved grip strength and an extension in survival. These findings reveal DOK7 is a novel modifier of SMA.


Assuntos
Proteínas Musculares/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Animais , Dependovirus/genética , Modelos Animais de Doenças , Deleção de Genes , Terapia Genética/métodos , Camundongos Endogâmicos C57BL , Atrofia Muscular Espinal/patologia , Junção Neuromuscular/genética , Junção Neuromuscular/patologia , Índice de Gravidade de Doença , Proteína 1 de Sobrevivência do Neurônio Motor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA