Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Biomacromolecules ; 24(7): 3246-3255, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37327397

RESUMO

Lytic polysaccharide monooxygenase (LPMO) enzymes have recently shaken up our knowledge of the enzymatic degradation of biopolymers and cellulose in particular. This unique class of metalloenzymes cleaves cellulose and other recalcitrant polysaccharides using an oxidative mechanism. Despite their potential in biomass saccharification and cellulose fibrillation, the detailed mode of action of LPMOs at the surface of cellulose fibers still remains poorly understood and highly challenging to investigate. In this study, we first determined the optimal parameters (temperature, pH, enzyme concentration, and pulp consistency) of LPMO action on the cellulose fibers by analyzing the changes in molar mass distribution of solubilized fibers using high performance size exclusion chromatography (HPSEC). Using an experimental design approach with a fungal LPMO from the AA9 family (PaLPMO9H) and cotton fibers, we revealed a maximum decrease in molar mass at 26.6 °C and pH 5.5, with 1.6% w/w enzyme loading in dilute cellulose dispersions (100 mg of cellulose at 0.5% w/v). These optimal conditions were used to further investigate the effect of PaLPMO9H on the cellulosic fiber structure. Direct visualization of the fiber surface by scanning electron microscopy (SEM) revealed that PaLPMO9H created cracks on the cellulose surface while it attacked tension regions that triggered the rearrangement of cellulose chains. Solid-state NMR indicated that PaLPMO9H increased the lateral fibril dimension and created novel accessible surfaces. This study confirms the LPMO-driven disruption of cellulose fibers and extends our knowledge of the mechanism underlying such modifications. We hypothesize that the oxidative cleavage at the surface of the fibers releases the tension stress with loosening of the fiber structure and peeling of the surface, thereby increasing the accessibility and facilitating fibrillation.


Assuntos
Celulose , Fibra de Algodão , Celulose/química , Polissacarídeos/metabolismo , Oxigenases de Função Mista/química , Oxirredução
2.
Biomacromolecules ; 22(2): 743-753, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33332094

RESUMO

Thermoresponsive hydrogels present unique properties, such as tunable mechanical performance or changes in volume, which make them attractive for applications including wound healing dressings, drug delivery vehicles, and implants, among others. This work reports the implementation of bioinspired thermoresponsive hydrogels composed of xyloglucan (XG) and cellulose nanocrystals (CNCs). Starting from tamarind seed XG (XGt), thermoresponsive XG was obtained by enzymatic degalactosylation (DG-XG), which reduced the galactose residue content by ∼50% and imparted a reversible thermal transition. XG with native composition and comparable molar mass to DG-XG was produced by an ultrasonication treatment (XGu) for a direct comparison of behavior. The hydrogels were prepared by simple mixing of DG-XG or XGu with CNCs in water. Phase diagrams were established to identify the ratios of DG-XG or XGu to CNCs that yielded a viscous liquid, a phase-separated mixture, a simple gel, or a thermoresponsive gel. Gelation occurred at a DG-XG or XGu to CNC ratio higher than that needed for the full surface coverage of CNCs and required relatively high overall concentrations of both components (tested concentrations up to 20 g/L XG and 30 g/L CNCs). This is likely a result of the increase in effective hydrodynamic volume of CNCs due to the formation of XG-CNC complexes. Investigation of the adsorption behavior indicated that DG-XG formed a more rigid layer on CNCs compared to XGu. Rheological properties of the hydrogels were characterized, and a reversible thermal transition was found for DG-XG/CNC gels at 35 °C. This thermoresponsive behavior provides opportunities to apply this system widely, especially in the biomedical field, where the mechanical properties could be further tuned by adjusting the CNC content.


Assuntos
Celulose , Nanopartículas , Glucanos , Hidrogéis , Xilanos
3.
Nat Chem Biol ; 14(3): 306-310, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29377002

RESUMO

Wood biomass is the most abundant feedstock envisioned for the development of modern biorefineries. However, the cost-effective conversion of this form of biomass into commodity products is limited by its resistance to enzymatic degradation. Here we describe a new family of fungal lytic polysaccharide monooxygenases (LPMOs) prevalent among white-rot and brown-rot basidiomycetes that is active on xylans-a recalcitrant polysaccharide abundant in wood biomass. Two AA14 LPMO members from the white-rot fungus Pycnoporus coccineus substantially increase the efficiency of wood saccharification through oxidative cleavage of highly refractory xylan-coated cellulose fibers. The discovery of this unique enzyme activity advances our knowledge on the degradation of woody biomass in nature and offers an innovative solution for improving enzyme cocktails for biorefinery applications.


Assuntos
Basidiomycota/enzimologia , Biomassa , Oxigenases de Função Mista/química , Polissacarídeos/química , Madeira/microbiologia , Biodegradação Ambiental , Biotecnologia/economia , Biotecnologia/métodos , Celulose/química , Biologia Computacional , Análise Custo-Benefício , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Genômica , Glicosilação , Oxigênio/química , Filogenia , Especificidade por Substrato , Transcriptoma , Xilanos/química
4.
Biomacromolecules ; 21(9): 3898-3908, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32804487

RESUMO

Interactions between polysaccharides, specifically between cellulose and hemicelluloses like xyloglucan (XG), govern the mechanical properties of the plant cell wall. This work aims to understand how XG molecular weight (MW) and the removal of saccharide residues impact the elastic modulus of XG-cellulose materials. Layered sub-micrometer-thick films of cellulose nanocrystals (CNCs) and XG were employed to mimic the structure of the plant cell wall and contained either (1) unmodified XG, (2) low MW XG produced by ultrasonication (USXG), or (3) XG with a reduced degree of galactosylation (DGXG). Their mechanical properties were characterized through thermal shrinking-induced buckling. Elastic moduli of 19 ± 2, 27 ± 1, and 75 ± 6 GPa were determined for XG-CNC, USXG-CNC, and DGXG-CNC films, respectively. The conformation of XG adsorbed on CNCs is influenced by MW, which impacts mechanical properties. To a greater degree, partial degalactosylation, which is known to increase XG self-association and binding capacity of XG to cellulose, increases the modulus by fourfold for DGXG-CNC films compared to XG-CNC. Films were also buckled while fully hydrated by using the thermal shrinking method but applying the heat using an autoclave; the results implied that hydrated films are thicker and softer, exhibiting a lower elastic modulus compared to dry films. This work contributes to the understanding of structure-function relationships in the plant cell wall and may aid in the design of tunable biobased materials for applications in biosensing, packaging, drug delivery, and tissue engineering.


Assuntos
Celulose , Nanopartículas , Glucanos , Xilanos
5.
Langmuir ; 35(41): 13427-13434, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31550891

RESUMO

Hydrogels are three-dimensional networks of hydro-soluble polymers containing a large amount of water that have found a wide panel of applications in many sectors. The need for eco-friendly and nontoxic materials for the elaboration of sustainable hydrogels is obvious, and materials derived from biomass can easily meet these requirements. Cellulose nanocrystals (CNC) and arabinoxylans (AX) are abundant, biobased, hydrophilic, and renewable nanoparticles and polymers that interact together. In this study, we have built fully biobased hydrogels using CNC and AX. First, as revealed by Quartz Crystal Microbalance with Dissipation (QCM-D) experiments, AX adsorbs almost instantly on cellulosic surfaces in an irreversible manner. Nevertheless, gelation kinetics is not instantaneous and shows temperature dependence. The determination of phase diagrams using the inverted tube method leads to the conclusion that high AX/CNC ratios are needed for gel formation. The mechanical properties of CNC-AX hydrogels were investigated by measuring storage and loss moduli (G', G'') as a function of concentrations and hydrogel reformation after submission to high shear rates. Hydrogel properties were also tuned by increasing the ionic strength and the enzymatic removal of arabinose moieties from AX. In light of the obtained results, we hypothesize that gel formation occurs in two steps, i.e., AX adsorption followed by gelation of the complexes, and is due to the formation of reversible and tunable interactions between CNC/AX complexes interacting with each other, offering a wide panel of physicochemical tools to tune and trigger the final properties of hydrogels.

6.
Langmuir ; 34(11): 3386-3394, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29461057

RESUMO

Multilayered thin films combining two oppositely charged nanoparticles (NPs), i.e., cellulose nanocrystals (CNCs) and Ge-imogolites, have been successfully obtained by the layer-by-layer method. CNC/Ge-imogolite (NP/NP) film growth patterns were studied by comparing growth mode of all of the nanoparticles thin films to that of films composed of CNC or Ge-imogolites combined with polyelectrolytes (PEs), i.e., cationic poly(allylamine hydrochloride) and anionic poly-4-styrene sulfonate (NP/PE films). NP/NP and NP/PE films growth patterns were found to be different. To get a deeper understanding of the growth mode of NP/NP, impact of different parameters, such as imogolites aspect ratio, adsorption time, ionic strength, and repeated immersion/drying, was evaluated and influence of the drying step is emphasized. The aspect ratio of imogolites was identified as an important feature for the film's architecture. The short Ge-imogolites form denser films because the surface packing was more efficient.

7.
Langmuir ; 33(17): 4138-4145, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28407712

RESUMO

Young's moduli of cellulose nanofibril (CNF)-poly(allylamine hydrochloride) (PAH) multilayered thin films were measured using strain-induced elastic buckling instability for mechanical measurements (SIEBIMM) and the quantitative nanomechanical mapping technique (PF-QNM). To establish the relationship between structure and mechanical properties, three types of films with various architectures were built using the layer-by-layer method by changing the ionic strength of the dipping solution. Both methods demonstrate that the architecture of a film has a strong impact on its mechanical properties even though the film has similar cellulose content, emphasizing the role of the architecture. Films with lower porosity (Φair = 0.34) and a more intricate network display the highest Young's moduli (9.3 GPa), whereas others with higher and similar porosity (Φair = 0.46-0.48) present lower Young's moduli (4.0-5.0 GPa). PF-QNM measurements indicate a reverse ranking that is probably indicative of the surface composition of the films.

8.
Langmuir ; 31(9): 2800-7, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25706711

RESUMO

A postassembly acid-treatment consisting of an immersion in 5 mM HCl solution was applied to carboxylated cellulose nanofibrils (CNF)-poly(allylamine) hydrochloride (PAH) multilayered thin films. Our results show that the treatment did not affect the overall thickness of the films without any loss of the components. However, a modification of the surface morphology was observed, as well as the swelling behavior. The process was perfectly reversible since the original structure was recovered when the thin films were rinsed by ultrapure water. Moreover, a more pronounced antireflective character was detected for the treated films. The origin of these reversible modifications was discussed. Notably, the scattering length density (SLD) profiles of the films before and after treatment support the idea of a structural reorganization of the components within the film driven by the change of their charge densities induced by the acid treatment.


Assuntos
Celulose/química , Ácido Clorídrico/química , Nanofibras/química , Concentração de Íons de Hidrogênio , Difração de Nêutrons , Fenômenos Ópticos , Propriedades de Superfície
9.
Biomacromolecules ; 16(2): 589-96, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25539015

RESUMO

Xyloglucan (XG) is believed to act as a cementing material that contributes to the cross-linking and mechanical properties of the cellulose framework in plant cell walls. XG can adsorb to the cellulose nanocrystal (CNC) surface in vitro in order to simulate this in vivo relationship. The target of our work was to investigate the sorption behavior of tamarind seed XG on CNC extracted from cotton linters at different XG/CNC concentration ratios, that is, different adsorption regimes regarding the XG-CNC complex organization and the enzymatic susceptibility of XG. First, we determined the adsorption isotherm. Second, XG-CNC complexes were enzymatically hydrolyzed using a xyloglucan-specific endoglucanase in order to quantify the different XG fractions involved in binding to CNC and to determine adsorption regimes, that is, presence of loops, tails, and trains. Finally, the architecture of the XG-CNC complex was investigated by transmission electron microscopy imaging of negatively stained XG-CNC suspensions and XG immunolabeled suspensions at different XG/CNC concentration ratios, both before and after xyloglucanase hydrolysis process. This study revealed that an increasing XG/CNC concentration ratio led to a change in the XG binding organization to CNC. At low XG/CNC concentration ratios, almost all XG chains were bound as trains to the CNC surface. In contrast, at increasing XG/CNC concentration ratios, the proportion of loops and tails increases. The organization change induces CNC aggregation to form a cellulose/XG network at low XG/CNC regimes, whereas CNC remains in the form of individual particles at higher XG/CNC regimes. Results are discussed both regarding the biological role of XG in plant cell walls and in the perspective of designing new biobased materials.


Assuntos
Celulase , Celulose/química , Glucanos/química , Nanopartículas/química , Tamarindus/enzimologia , Xilanos/química , Adsorção/fisiologia , Celulase/metabolismo , Celulose/metabolismo , Glucanos/metabolismo , Nanopartículas/metabolismo , Xilanos/metabolismo
10.
Soft Matter ; 11(32): 6472-81, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26179417

RESUMO

In this work, the adsorption of a neutral flexible polysaccharide, xyloglucan (XG), onto thin cellulose nanocrystal (CNC) surfaces has been investigated to get more insight into the CNC-XG association. Gold-coated quartz crystals were spin-coated with one layer of CNC, and XG adsorption was monitored in situ using a quartz crystal microbalance with dissipation (QCM-D). The adsorption of XG under flow at different concentrations did not result in the same surface concentration, which evidenced a kinetically controlled process. In an attempt to describe the binding of XG to CNCs, adsorption data were fitted to a kinetic model comprising a contribution from XG adsorption onto uncovered CNC surfaces and a contribution from XG adsorption after rearrangement. Kinetic studies evidenced the presence of two adsorption regimes as a function of XG concentration. For low XG concentrations, the kinetic constant for chain rearrangement is comparable to the kinetic constant for adsorption. This fact implies a rearrangement and alignment of XG molecules on CNCs. Differently, for higher XG concentrations, the kinetic constant related to the conformational rearrangement decreases, indicating that XG molecules have no time to laterally rearrange before new XG molecules adsorb.


Assuntos
Celulose/química , Glucanos/química , Nanopartículas/química , Xilanos/química , Adsorção , Ouro/química , Cinética , Quartzo/química
11.
Biopolymers ; 101(9): 924-30, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24719043

RESUMO

The impact of the ionic strength on the film growth has been studied for the architectures composed of chitin nanocrystals (ChiNC) and xyloglucan (XG) to better understand the fabrication process of multilayer films. The formation of ChiNC-XG assemblies was monitored by quartz crystal microbalance with dissipation (QCM-D) and multilayer films were fabricated by the spin-coating assisted layer-by-layer (LbL) procedure. Films were prepared from 1 g L(-1) ChiNC dispersions at pH 4 without and with the addition of NaCl (0 and 5 mM, respectively) and 0.5 g L(-1) XG solutions in water. Distinct growth pattern and structural characteristics were found for the films prepared from ChiNC at 0 and 5 mM NaCl. Specifically, films assembled without salt exhibited lower mass deposition and film growth failed after 5 (ChiNC-XG) bilayers. Differently, at 5 mM NaCl higher amounts of both polymers (ChiNC and XG) were adsorbed; therefore, the films were thicker, and the deposition succeeded up to 10 bilayers. Atomic force microscopy (AFM) revealed an almost completely covered surface after the adsorption of ChiNC at 5 mM NaCl whereas salt-free ChiNC dispersions resulted in lower surface coverage. These results reliably concluded that the fabrication of (ChiNC-XG) films requires the screening of the charges to promote the layers stability.


Assuntos
Quitina/química , Glucanos/química , Nanopartículas/química , Concentração Osmolar , Xilanos/química , Adsorção , Microscopia de Força Atômica , Nanopartículas/ultraestrutura
12.
Langmuir ; 30(27): 8091-100, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24971725

RESUMO

TEMPO-oxidized cellulose nanofibrils (CNF) and synthetic poly(allylamine) hydrochloride (PAH) were used to build multilayered thin films via the dipping-assisted layer-by-layer technique. We used the ionic strength, in both CNF suspension and PAH solution, as a key parameter to control the structure of the films. Three systems with different ionic strength parameters were investigated. We studied the growth of the films and their surface morphology by ellipsometry and AFM and investigated their porosity and swelling behavior using neutron reflectivity. Our results showed that the PAH conformation is a determining factor not only for film growth but also for structural properties: with salt-free PAH solution where chains have extended conformation, the resulting films have lower porosity and higher swelling ratios, compared to the ones made using high ionic strength (1 M) PAH solution, where chains have a coiled conformation. The slight aggregation of CNF, induced by adding a small amount of salt (12 mM), has less influence on film growth and porosity, whereas it has a greater impact on swelling. The origin of these differences is discussed. The structure of the films obtained was linked to their optical properties and, in particular, to their antireflective character.


Assuntos
Celulose/química , Nanofibras/química , Alilamina/química , Óxidos N-Cíclicos/química , Concentração Osmolar , Oxirredução , Porosidade
13.
Biomacromolecules ; 15(1): 188-94, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24328307

RESUMO

For the first time, the adsorption of xyloglucan (XG) on chitin nanocrystals (ChiNC) surface was proved using quartz crystal microbalance with dissipation (QCM-D) and by successfully building up spin-coated assisted layer-by-layer (LbL) structures on solid substrates. Several parameters in the adsorption process, such as ChiNC concentrations (0.5-3.0 g L(-1)), number of layers, or the outmost layer material (ChiNC or XG), were investigated to better understand the fabrication process of multilayer films. The thickness of the homogeneous film increased linearly with the number of bilayers, with an average thickness per bilayer of 12.3 nm. Additionally surface morphology was studied by atomic force microscopy (AFM), which revealed an almost completely covered surface after the adsorption of ChiNC. The final structures were found to have semireflective properties capable of being tuned by adjusting the ChiNC dispersion parameters.


Assuntos
Quitina/química , Glucanos/química , Nanopartículas/química , Extratos Vegetais/química , Xilanos/química , Animais , Quitina/análise , Crustáceos , Cristalização , Glucanos/análise , Nanopartículas/análise , Extratos Vegetais/análise , Técnicas de Microbalança de Cristal de Quartzo , Tamarindus , Xilanos/análise
14.
Gels ; 10(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38786251

RESUMO

The development of fully biobased hydrogels obtained by simple routes and in the absence of toxic or environmentally harmful reagents is a major challenge in meeting new societal demands. In this work, we discuss the development of hydrogels made from cellulose nanocrystals (CNCs) and xyloglucan (XG), two non-toxic, renewable, and biobased components. We present three strategies to fine-tune the functional properties. The first one consists in varying the XG/CNC ratio that leads to the modulation of the mechanical properties of hydrogels as well as a better comprehension of the gel mechanism formation. The second relies on tuning the XG chains' interaction by enzymatic modification to achieve thermoresponsive systems. Finally, the third one is based on the increase in the hydrogel solid content by osmotic concentration. The high-solid-content gels were found to have very high mechanical properties and self-healing properties that can be used for molding materials. Overall, these approaches are a case study of potential modifications and properties offered by biobased nanocolloidal hydrogels.

15.
Int J Biol Macromol ; : 133429, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944074

RESUMO

Lytic polysaccharide monooxygenase (LPMO)-catalyzed oxidative processes play a major role in natural biomass conversion. Despite their oxidative cleavage at the surface of polysaccharides, understanding of their mode of action, and the impact of structural patterns of the cellulose fiber on LPMO activity is still not fully understood. In this work, we investigated the action of two different LPMOs from Podospora anserina on celluloses showing different structural patterns. For this purpose, we prepared cellulose II and cellulose III allomorphs from cellulose I cotton linters, as well as amorphous cellulose. LPMO action was monitored in terms of surface morphology, molar mass changes and monosaccharide profile. Both PaLPMO9E and PaLPMO9H were active on the different cellulose allomorphs (I, II and III), and on amorphous cellulose (PASC) whereas they displayed a different behavior, with a higher molar mass decrease observed for cellulose I. Overall, the pretreatment with LPMO enzymes clearly increased the accessibility of all types of cellulose, which was quantified by the higher carboxylate content after carboxymethylation reaction on LPMO-pretreated celluloses. This work gives more insight into the action of LPMOs as a tool for deconstructing lignocellulosic biomass to obtain new bio-based building blocks.

16.
Nat Plants ; 10(3): 494-511, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38467800

RESUMO

Pressurized cells with strong walls make up the hydrostatic skeleton of plants. Assembly and expansion of such stressed walls depend on a family of secreted RAPID ALKALINIZATION FACTOR (RALF) peptides, which bind both a membrane receptor complex and wall-localized LEUCINE-RICH REPEAT EXTENSIN (LRXs) in a mutually exclusive way. Here we show that, in root hairs, the RALF22 peptide has a dual structural and signalling role in cell expansion. Together with LRX1, it directs the compaction of charged pectin polymers at the root hair tip into periodic circumferential rings. Free RALF22 induces the formation of a complex with LORELEI-LIKE-GPI-ANCHORED PROTEIN 1 and FERONIA, triggering adaptive cellular responses. These findings show how a peptide simultaneously functions as a structural component organizing cell wall architecture and as a feedback signalling molecule that regulates this process depending on its interaction partners. This mechanism may also underlie wall assembly and expansion in other plant cell types.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Peptídeos/metabolismo , Plantas/metabolismo , Parede Celular/metabolismo , Raízes de Plantas/metabolismo
17.
Biomacromolecules ; 14(10): 3599-609, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24015977

RESUMO

Understanding the hydrolysis process of lignocellulosic substrates remains a challenge in the biotechnology field. We aimed here at investigating the effect of substrate architecture on the enzymatic degradation process using two different multilayered model films composed of cellulose nanocrystals (CNCs) and xyloglucan (XG) chains. They were built by a spin-assisted layer-by-layer (LbL) approach and consisted either of (i) an alternation of CNC and XG layers or of (ii) layers of mixed (CNC/XG) complexes alternated with polycation layers. Neutron reflectivity (NR) was used to determine the architecture and composition of these films and to characterize their swelling in aqueous solution. The films displayed different [XG]/[CNC] ratios and swelling behavior. Enzymatic degradation of films was then performed and investigated by quartz crystal microbalance with dissipation monitoring (QCM-D). We demonstrated that some architectural features of the substrate, such as polysaccharide accessibility, porosity, and cross-links, influenced the enzymatic degradation.


Assuntos
Celulase/metabolismo , Celulose/metabolismo , Glucanos/metabolismo , Nanopartículas/metabolismo , Xilanos/metabolismo , Celulose/química , Glucanos/química , Hidrólise , Nanopartículas/química , Trichoderma/enzimologia , Xilanos/química
18.
Carbohydr Polym ; 314: 120951, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173018

RESUMO

In this work, we have prepared cellulose-based actuators taking advantage of the pH-sensitive solubility of chitosan (CH) and the mechanical strength of CNFs. Bilayer films were prepared by vacuum filtration inspired by plant structures that exhibit reversible deformation under pH changes. The presence of CH in one of the layers led to asymmetric swelling at low pH, thanks to the electrostatic repulsion between charged amino groups of CH, and the subsequent twisting with the CH layer on the outside. Reversibility was achieved by substituting pristine CNFs with carboxymethylated CNFs (CMCNFs), that are charged at high pH and thus competed with the effects of amino groups. Swelling and mechanical properties of layers under pH changes were studied by gravimetry and dynamic mechanical analysis (DMA) to quantify the contribution of chitosan and the modified CNFs on the reversibility control. This work evidenced the key role of surface charge and layer stiffness to achieve reversibility. Bending was triggered by the different water uptake of each layer, and shape recovery was achieved when the shrunk layer shower higher rigidity than the swollen layer.

19.
Carbohydr Polym ; 321: 121305, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739535

RESUMO

In this work, we evaluated the flexoelectric and piezoelectric contributions to the overall macroscopic polarization in cellulose films. To this end, the flexoelectric µ31 and transverse effective piezoelectric e31,f coefficients of cellulose films were determined using cantilever beam bending. The experiments were based on theoretical developments allowing to separate the flexoelectric from the piezoelectric contribution, represented by an effective flexoelectric coefficient, µeff, depending on both e31,f and µ31. Five free-standing and stainless steel/cellulose bilayer films were prepared from cellulose showing different morphologies and surface charge degrees: two almost neutral cellulose microfibers (CMF) and three (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)-oxidized cellulose micro- (TCMF) and nanofibers (TCNF) bearing negative charged groups on the surface. The dielectric properties of the films indicated a low dielectric constant for unmodified CMF, and a huge increase for TEMPO-oxidized samples, which were up to 9 times higher than poly(vinylidene fluoride)-based polymers. TEMPO-oxidized cellulose films exhibited the largest flexoelectric coefficients (almost 7 times higher than those of synthetic polymer dielectrics), which evidenced that the presence of polar groups and surface charge boosted both flexoelectricity and piezoelectricity in unpoled cellulose films. These findings pave the way towards sustainable cellulose-based curvature sensors with large effective flexoelectric coefficients, without the need of preliminary energy consuming poling step.

20.
Langmuir ; 28(34): 12463-71, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22866865

RESUMO

Highly stable single-walled carbon nanotube (SWNT) dispersions are obtained after ultrasonication in cellulose nanocrystal (CN) aqueous colloidal suspensions. Mild dispersion conditions were applied to preserve the SWNT length in order to facilitate the identification of hybrid objects. This led to a moderate dispersion of 24% of the SWNTs. Under these conditions, atomic force microscopy (AFM) and transmission electron microscopy (TEM) experiments succeeded in demonstrating the formation of hybrid particles in which CNs are aligned along the nanotube axis by a self-assembly process. These SWNT/CN dispersions are used to create multilayered thin films with the layer-by-layer method using polyallylamine hydrochloride as a polyelectrolyte. Homogeneous films from one to eight bilayers are obtained with an average bilayer thickness of 17 nm. The presence of SWNTs in each bilayer is attested to by characteristic Raman signals. It should be noted that these films exhibit a near-infrared luminescence signal due to isolated and well-separated nanotubes. Furthermore, scanning electron microscopy (SEM) suggests that the SWNT network is percolating through the film.


Assuntos
Celulose/química , Substâncias Luminescentes/química , Nanopartículas/química , Nanotecnologia/métodos , Nanotubos de Carbono/química , Modelos Moleculares , Conformação Molecular , Fenômenos Ópticos , Sonicação , Suspensões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA