Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Alcohol Alcohol ; 58(2): 134-141, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36562601

RESUMO

AIMS: Alcohol-associated liver disease (ALD) is a global health problem caused, among other factors, by oxidative stress from the formation of reactive oxygen species (ROS). One important source of ROS is microsomal ethanol metabolism catalyzed by cytochrome P450 2E1 (CYP2E1), which is induced by chronic ethanol consumption. Inhibition of CYP2E1 by clomethiazole (CMZ) decreases oxidative stress in cell cultures and improves ALD in animal studies. Our study aimed to assess the benefits of a CYP2E1 inhibitor (clomethiazole) in detoxification of patients with ALD. METHODS: Open label, randomized controlled clinical trial to study whether CYP2E1 inhibition improves ALD in the patients with alcohol use disorders admitted for alcohol detoxification therapy (ADT). Patients had to have a serum aspartate aminotransferase (AST) activity exceeding twice the upper normal limit at time of admission and be non-cirrhotic defined by fibroscan value <12 kPa. Sixty patients were randomly assigned to ADT with either CMZ or clorazepate (CZP) for 7-10 days in a 1:1 ratio. The chlorzoxazone test of CYP2E1 activity was performed at enrolment and at 2 points during the study. RESULTS: ADT improved hepatic steatosis (controlled attenuation parameter) in both groups significantly. A trend towards a greater improvement in hepatic fat content during ADT (-21.5%) was observed in the CMZ group (252 ± 48 dB/m vs. 321 ± 38 dB/m; P < 0.0001) compared with the CZP group (-13.9%; 273 ± 38 dB/m vs. 317 ± 39 dB/m; P < 0.0001). As already reported, serum AST (P < 0.004) and alanine aminotransferase (ALT) activities (P < 0.0006) significantly decreased in CMZ patients as compared with patients on CZP by the end of hospitalization. A significant correlation was found between AST (P = 0.023), ALT (P = 0.009), GGT (P = 0.039) and CAP. CONCLUSION: This study demonstrates that CMZ improves clinical biomarkers for ALD in humans most likely due to its inhibitory effect on CYP2E1. Because of its addictive potential, CMZ can only be given for a short period of time and therefore other CYP2E1 inhibitors to treat ALD are needed.


Assuntos
Alcoolismo , Fígado Gorduroso , Hepatopatias Alcoólicas , Animais , Humanos , Clormetiazol/metabolismo , Clormetiazol/farmacologia , Clorazepato Dipotássico , Citocromo P-450 CYP2E1 , Alcoolismo/metabolismo , Espécies Reativas de Oxigênio , Fígado , Hepatopatias Alcoólicas/metabolismo , Etanol/farmacologia , Transaminases/metabolismo , Transaminases/farmacologia , Alanina Transaminase
2.
Sensors (Basel) ; 23(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36850872

RESUMO

Currently, few experimental methods exist that enable the mechanical characterization of adhesives under high strain rates. One such method is the Split Hopkinson Bar (SHB) test. The mechanical characterization of adhesives is performed using different specimen configurations, such as Single Lap Joint (SLJ) specimens. A gripping system, attached to the bars through threading, was conceived to enable the testing of SLJs. An optimization study for selecting the best thread was performed, analyzing the thread type, the nominal diameter, and the thread pitch. Afterwards, the gripping system geometry was numerically evaluated. The optimal threaded connection for the specimen consists of a trapezoidal thread with a 14 mm diameter and a 2 mm thread pitch. To validate the gripping system, the load-displacement (P-δ) curve of an SLJ, which was simulated as if it were tested on the SHB apparatus, was compared with an analogous curve from a validated drop-weight test numerical model.

3.
J Allergy Clin Immunol ; 149(2): 698-707.e3, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34333031

RESUMO

BACKGROUND: IgE to galactose alpha-1,3 galactose (alpha-gal) causes alpha-gal syndrome (delayed anaphylaxis after ingestion of mammalian meat). Development of sensitization has been attributed to tick bites; however, the possible role of other parasites has not been well studied. OBJECTIVE: Our aims were to assess the presence, relative abundances, and site of localization of alpha-gal-containing proteins in common ectoparasites and endoparasites endemic in an area of high prevalence of alpha-gal syndrome, as well as to investigate the ability of ascaris antigens to elicit a reaction in a humanized rat basophil in vitro sensitization model. METHODS: Levels of total IgE, Ascaris-specific IgE, and alpha-gal IgE were measured in sera from patients with challenge-proven alpha-gal syndrome and from controls without allergy. The presence, concentration, and localization of alpha-gal in parasites were assessed by ELISA, Western blotting, and immunohistochemistry. The ability of Ascaris lumbricoides antigen to elicit IgE-dependent reactivity was demonstrated by using the RS-ATL8 basophil reporter system. RESULTS: Alpha-gal IgE level correlated with A lumbricoides-specific IgE level. Alpha-gal protein at 70 to 130 kDa was detected in A lumbricoides at concentrations higher than those found in Rhipicephalus evertsi and Amblyomma hebraeum ticks. Immunohistochemistry was used to localize alpha-gal in tick salivary acini and the helminth gut. Non-alpha-gal-containing A lumbricoides antigens activated RS-ATL8 basophils primed with serum from subjects with alpha-gal syndrome. CONCLUSION: We demonstrated the presence, relative abundances, and site of localization of alpha-gal-containing proteins in parasites. The activation of RS-ATL8 IgE reporter cells primed with serum from subjects with alpha-gal syndrome on exposure to non-alpha-gal-containing A lumbricoides proteins indicates a possible role of exposure to A lumbricoides in alpha-gal sensitization and clinical reactivity.


Assuntos
Ascaris lumbricoides/imunologia , Hipersensibilidade Alimentar/etiologia , Carrapatos/imunologia , Animais , Antígenos de Helmintos/imunologia , Células Cultivadas , Dissacarídeos/análise , Humanos , Imunoglobulina E/imunologia , Ratos
4.
Molecules ; 27(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35209202

RESUMO

Schistosomiasis is a neglected tropical disease affecting more than 200 million people worldwide. Chemotherapy relies on one single drug, praziquantel, which is safe but ineffective at killing larval stages of this parasite. Furthermore, concerns have been expressed about the rise in resistance against this drug. In the absence of an antischistosomal vaccine, it is, therefore, necessary to develop new drugs against the different species of schistosomes. Protein kinases are important molecules involved in key cellular processes such as signaling, growth, and differentiation. The kinome of schistosomes has been studied and the suitability of schistosomal protein kinases as targets demonstrated by RNA interference studies. Although protein kinase inhibitors are mostly used in cancer therapy, e.g., for the treatment of chronic myeloid leukemia or melanoma, they are now being increasingly explored for the treatment of non-oncological conditions, including schistosomiasis. Here, we discuss the various approaches including screening of natural and synthetic compounds, de novo drug development, and drug repurposing in the context of the search for protein kinase inhibitors against schistosomiasis. We discuss the status quo of the development of kinase inhibitors against schistosomal serine/threonine kinases such as polo-like kinases (PLKs) and mitogen-activated protein kinases (MAP kinases), as well as protein tyrosine kinases (PTKs).


Assuntos
Anti-Helmínticos/uso terapêutico , Reposicionamento de Medicamentos , Proteínas de Helminto/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Schistosoma/enzimologia , Esquistossomose , Animais , Proteínas de Helminto/metabolismo , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Esquistossomose/tratamento farmacológico , Esquistossomose/enzimologia
5.
J Cell Sci ; 130(6): 1179-1193, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28193733

RESUMO

The flagellum and flagellum attachment zone (FAZ) are important cytoskeletal structures in trypanosomatids, being required for motility, cell division and cell morphogenesis. Trypanosomatid cytoskeletons contain abundant high molecular mass proteins (HMMPs), but many of their biological functions are still unclear. Here, we report the characterization of the giant FAZ protein, FAZ10, in Trypanosoma brucei, which, using immunoelectron microscopy, we show localizes to the intermembrane staples in the FAZ intracellular domain. Our data show that FAZ10 is a giant cytoskeletal protein essential for normal growth and morphology in both procyclic and bloodstream parasite life cycle stages, with its depletion leading to defects in cell morphogenesis, flagellum attachment, and kinetoplast and nucleus positioning. We show that the flagellum attachment defects are probably brought about by reduced tethering of the proximal domain of the paraflagellar rod to the FAZ filament. Further, FAZ10 depletion also reduces abundance of FAZ flagellum domain protein, ClpGM6. Moreover, ablation of FAZ10 impaired the timing and placement of the cleavage furrow during cytokinesis, resulting in premature or asymmetrical cell division.


Assuntos
Citocinese , Flagelos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Posicionamento Cromossômico , Segregação de Cromossomos , Proteínas do Citoesqueleto/metabolismo , Flagelos/ultraestrutura , Técnicas de Silenciamento de Genes , Trypanosoma brucei brucei/ultraestrutura
7.
Life (Basel) ; 13(8)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37629519

RESUMO

Alcohol effect hepatic lipid metabolism through various mechanisms, leading synergistically to an accumulation of fatty acids (FA) and triglycerides. Obesity, as well as dietary fat (saturated fatty acids (FA) versus poly-unsaturated fatty acids (PUFA)) may modulate the hepatic fat. Alcohol inhibits adenosine monophosphate activated kinase (AMPK). AMPK activates peroxisome proliferator activated receptor a (PPARα) and leads to a decreased activation of sterol regulatory element binding protein 1c (SRABP1c). The inhibition of AMPK, and thus of PPARα, results in an inhibition of FA oxidation. This ß-oxidation is further reduced due to mitochondrial damage induced through cytochrome P4502E1 (CYP2E1)-driven oxidative stress. Furthermore, the synthesis of FAs is stimulated through an activation of SHREP1. In addition, alcohol consumption leads to a reduced production of adiponectin in adipocytes due to oxidative stress and to an increased mobilization of FAs from adipose tissue and from the gut as chylomicrons. On the other side, the secretion of FAs via very-low-density lipoproteins (VLDL) from the liver is inhibited by alcohol. Alcohol also affects signal pathways such as early growth response 1 (Egr-1) associated with the expression of tumour necrosis factor α (TNF α), and the mammalian target of rapamycin (mTOR) a key regulator of autophagy. Both have influence the pathogenesis of alcoholic fatty liver. Alcohol-induced gut dysbiosis contributes to the severity of ALD by increasing the metabolism of ethanol in the gut and promoting intestinal dysfunction. Moreover, pathogen-associated molecular patterns (PAMPS) via specific Toll-like receptor (TLR) bacterial overgrowth leads to the translocation of bacteria. Endotoxins and toxic ethanol metabolites enter the enterohepatic circulation, reaching the liver and inducing the activation of the nuclear factor kappa-B (NFκB) pathway. Pro-inflammatory cytokines released in the process contribute to inflammation and fibrosis. In addition, cellular apoptosis is inhibited in favour of necrosis.

8.
Front Cell Infect Microbiol ; 12: 913301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865824

RESUMO

Schistosomiasis is a parasitic neglected disease with praziquantel (PZQ) utilized as the main drug for treatment, despite its low effectiveness against early stages of the worm. To aid in the search for new drugs to tackle schistosomiasis, computer-aided drug design has been proved a helpful tool to enhance the search and initial identification of schistosomicidal compounds, allowing fast and cost-efficient progress in drug discovery. The combination of high-throughput in silico data followed by in vitro phenotypic screening assays allows the assessment of a vast library of compounds with the potential to inhibit a single or even several biological targets in a more time- and cost-saving manner. Here, we describe the molecular docking for in silico screening of predicted homology models of five protein kinases (JNK, p38, ERK1, ERK2, and FES) of Schistosoma mansoni against approximately 85,000 molecules from the Managed Chemical Compounds Collection (MCCC) of the University of Nottingham (UK). We selected 169 molecules predicted to bind to SmERK1, SmERK2, SmFES, SmJNK, and/or Smp38 for in vitro screening assays using schistosomula and adult worms. In total, 89 (52.6%) molecules were considered active in at least one of the assays. This approach shows a much higher efficiency when compared to using only traditional high-throughput in vitro screening assays, where initial positive hits are retrieved from testing thousands of molecules. Additionally, when we focused on compound promiscuity over selectivity, we were able to efficiently detect active compounds that are predicted to target all kinases at the same time. This approach reinforces the concept of polypharmacology aiming for "one drug-multiple targets". Moreover, at least 17 active compounds presented satisfactory drug-like properties score when compared to PZQ, which allows for optimization before further in vivo screening assays. In conclusion, our data support the use of computer-aided drug design methodologies in conjunction with high-throughput screening approach.


Assuntos
Esquistossomose mansoni , Esquistossomose , Animais , Simulação de Acoplamento Molecular , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Schistosoma mansoni , Esquistossomose mansoni/tratamento farmacológico
9.
Diagnostics (Basel) ; 12(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36140465

RESUMO

Rat basophilic leukaemia (RBL) cells have been used for decades as a model of high-affinity Immunoglobulin E (IgE) receptor (FcεRI) signalling. Here, we describe the generation and use of huNPY-mRFP, a new humanised fluorescent IgE reporter cell line. Fusion of Neuropeptide Y (NPY) with monomeric red fluorescent protein (mRFP) results in targeting of fluorescence to the granules and its fast release into the supernatant upon IgE-dependent stimulation. Following overnight sensitisation with serum, optimal release of fluorescence upon dose-dependent stimulation with allergen-containing extracts could be measured after 45 min, without cell lysis or addition of any reagents. Five substitutions (D194A, K212A, K216A, K226A, and K230A) were introduced into the FcεRIα cDNA used for transfection, which resulted in the removal of known endoplasmic reticulum retention signals and high surface expression of human FcεRIα* in huNPY-mRFP cells (where * denotes the penta-substituted variant), comparable to the ~500,000 FcεRIα molecules per cell in the RS-ATL8 humanised luciferase reporter, which is a human FcεRIα/FcεRIγ double transfectant. The huNPY-mRFP reporter was used to demonstrate engagement of specific IgE in sera of Echinococcus granulosus-infected individuals by E. granulosus elongation factor EgEF-1ß and, to a lesser extent, by EgEF-1δ, which had been previously described as IgE-immunoreactive EgEF-1ß/δ.

10.
ACS Omega ; 5(16): 9064-9070, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32363258

RESUMO

The screening of compound libraries to identify small-molecule modulators of specific biological targets is crucial in the process for the discovery of novel therapeutics and molecular probes. Considering the need for simple single-tool assay technologies with which one could monitor "all" kinases, we developed a fluorescence polarization (FP)-based assay to monitor the binding capabilities of protein kinases to ATP. We used BODIPY ATP-y-S as a probe to measure the shift in the polarization of a light beam when passed through the sample. We were able to optimize the assay using commercial Protein Kinase A (PKA) and H7 efficiently inhibited the binding of the probe when added to the reaction. Furthermore, we were able to employ the assay in a high-throughput fashion and validate the screening of a set of small molecules predicted to dock into the ATP-binding site of PKA. This will be useful to screen larger libraries of compounds that may target protein kinases by blocking ATP binding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA