Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Transgenic Res ; 29(3): 295-305, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32318934

RESUMO

Chloroplast transformation has many potential advantages for the production of recombinant proteins in plants. However, it has been reported that chloroplast expression of many proteins, such as human epidermal growth factor (hEGF), results hindered by post-transcriptional mechanisms. hEGF degradation has been related to the redox potential of the stroma and protein misfolding. To solve this problem, we proposed the redirection of hEGF into the thylakoid lumen where the environment could improve disulfide bonds formation stabilizing the functional conformation of the protein. We generated transplastomic tobacco plants targeting hEGF protein to the thylakoid lumen by adding a transit peptide (Str). Following this approach, we could detect thylakoid lumen-targeted hEGF by western blotting while stromal accumulation of hEGF remained undetectable. Southern blot analysis confirmed the integration of the transgene through homologous recombination into the plastome. Northern blot analysis showed similar levels of egf transcripts in the EGF and StrEGF lines. These results suggest that higher stability of the hEGF peptide in the thylakoid lumen is the primary cause of the increased accumulation of the recombinant protein observed in StrEGF lines. They also highlight the necessity of exploring different sub-organellar destinations to improve the accumulation levels of a specific recombinant protein in plastids.


Assuntos
Cloroplastos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Nicotiana/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Tilacoides/metabolismo , Transgenes , Cloroplastos/genética , Fator de Crescimento Epidérmico/genética , Humanos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plastídeos/genética , Plastídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Tilacoides/genética , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
2.
Mol Genet Genomics ; 293(5): 1091-1106, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29705936

RESUMO

Allium vegetables, such as garlic and onion, have understudied genomes and limited molecular resources, hindering advances in genetic research and breeding of these species. In this study, we characterized and compared the simple sequence repeats (SSR) landscape in the transcriptomes of garlic and related Allium (A. cepa, A. fistulosum, and A. tuberosum) and non-Allium monocot species. In addition, 110 SSR markers were developed from garlic ESTs, and they were characterized-along with 112 previously developed SSRs-at various levels, including transferability across Alliaceae species, and their usefulness for genetic diversity analysis. Among the Allium species analyzed, garlic ESTs had the highest overall SSR density, the lowest frequency of trinucleotides, and the highest of di- and tetranucleotides. When compared to more distantly related monocots, outside the Asparagales order, it was evident that ESTs of Allium species shared major commonalities with regards to SSR density, frequency distribution, sequence motifs, and GC content. A significant fraction of the SSR markers were successfully transferred across Allium species, including crops for which no SSR markers have been developed yet, such as leek, shallot, chives, and elephant garlic. Diversity analysis of garlic cultivars with selected SSRs revealed 36 alleles, with 2-5 alleles/locus, and PIC = 0.38. Cluster analysis grouped the accessions according to their flowering behavior, botanical variety, and ecophysiological characteristics. Results from this study contribute to the characterization of Allium transcriptomes. The new SSR markers developed, along with the data from the polymorphism and transferability analyses, will aid in assisting genetic research and breeding in garlic and other Allium.


Assuntos
Etiquetas de Sequências Expressas , Alho/genética , Repetições de Microssatélites , Polimorfismo Genético , Allium/classificação , Allium/genética , Alho/classificação , Marcadores Genéticos , Testes Genéticos , Genoma de Planta , Melhoramento Vegetal , Transcriptoma
3.
Dev Biol ; 297(1): 228-37, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16872593

RESUMO

The first member of the cysteine-rich secretory protein (CRISP) family was described by our laboratory in the rat epididymis, and it is known as DE or CRISP-1. Since then, numerous CRISPs exhibiting a high amino acid sequence similarity have been identified in animals, plants and fungi, although their functions remain largely unknown. CRISP-1 proteins are candidates to mediate gamete fusion in the rat, mouse and human through their binding to complementary sites on the egg surface. To elucidate the molecular mechanisms underlying CRISP-1 function, in the present work, deletion mutants of protein DE were generated and examined for their ability to bind to the rat egg and interfere with gamete fusion. Results revealed that the egg-binding ability of DE resides within a 45-amino acid N-terminal region containing the two motifs of the CRISP family named Signature 1 and Signature 2. Subsequent assays using synthetic peptides and other CRISPs support that the egg-binding site of DE falls in the 12-amino-acid region corresponding to Signature 2. The interesting finding that the binding site of DE resides in an evolutionarily conserved region of the molecule provides novel information on the molecular mechanisms underlying CRISP-1 function in gamete fusion with important implications on the structure-function relationship of other members of the widely distributed CRISP family.


Assuntos
Glicoproteínas de Membrana/metabolismo , Interações Espermatozoide-Óvulo/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Sequência Conservada , Evolução Molecular , Feminino , Masculino , Glicoproteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley
4.
Biol Reprod ; 67(4): 1225-31, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12297540

RESUMO

Rat sperm epididymal glycoprotein DE belongs to the cysteine-rich secretory protein (CRISP) family and participates in sperm-egg fusion through its binding to complementary sites on the egg surface. To investigate the molecular mechanisms underlying the role of DE in gamete fusion, in the present work we expressed DE in a prokaryotic system, and examined the relevance of carbohydrates and disulfide bonds for the biological activity of the protein. Immunofluorescence and sperm-egg fusion assays carried out in the presence of recombinant DE (recDE) revealed that this protein exhibits the ability to bind to the DE-egg binding sites and to inhibit gamete fusion, as does native DE (nDE). Comparison of the proteins indicated, however, that the inhibitory ability of recDE was significantly lower than that of nDE. This difference would not be due to the lack of carbohydrates in the bacterially expressed protein because enzymatically deglycosylated nDE was as able as the untreated protein to inhibit gamete fusion. To examine whether disulfide bridges are involved in DE activity, the presence of sulfhydryls in nDE and recDE was evaluated by the biotin-maleimide technique. Results indicated that, unlike nDE, in which all cysteines are involved in disulfide bonds, recDE contains free thiol groups. Subsequent experiments showed that reduction of nDE with dithiothreitol significantly decreased the ability of the protein to inhibit gamete fusion. Together, these results indicate that whereas carbohydrates do not have a role in DE-mediated gamete fusion, disulfide bridges are required for full biological activity of the protein. To our knowledge, this is the first study reporting the relevance of structural components for the function of a CRISP member.


Assuntos
Epididimo/química , Expressão Gênica , Glicoproteínas/química , Glicoproteínas/fisiologia , Proteínas de Plasma Seminal/química , Proteínas de Plasma Seminal/fisiologia , Interações Espermatozoide-Óvulo , Relação Estrutura-Atividade , Animais , Biotina , Western Blotting , Carboidratos/análise , Carboidratos/química , Dissulfetos/análise , Dissulfetos/química , Ditiotreitol/farmacologia , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Técnica Indireta de Fluorescência para Anticorpo , Glicoproteínas/genética , Glicosilação , Humanos , Masculino , Maleimidas , Peso Molecular , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia , Proteínas de Plasma Seminal/genética , Interações Espermatozoide-Óvulo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA