RESUMO
BACKGROUND: Chronic kidney disease (CKD) accelerates vascular calcification via phenotypic switching of vascular smooth muscle cells (VSMCs). We investigated the roles of circulating small extracellular vesicles (sEVs) between the kidneys and VSMCs and uncovered relevant sEV-propagated microRNAs (miRNAs) and their biological signaling pathways. METHODS AND RESULTS: We established CKD models in rats and mice by adenine-induced tubulointerstitial fibrosis. Cultures of A10 embryonic rat VSMCs showed increased calcification and transcription of osterix (Sp7), osteocalcin (Bglap), and osteopontin (Spp1) when treated with rat CKD serum. sEVs, but not sEV-depleted serum, accelerated calcification in VSMCs. Intraperitoneal administration of a neutral sphingomyelinase and biogenesis/release inhibitor of sEVs, GW4869 (2.5 mg/kg per 2 days), inhibited thoracic aortic calcification in CKD mice under a high-phosphorus diet. GW4869 induced a nearly full recovery of calcification and transcription of osteogenic marker genes. In CKD, the miRNA transcriptome of sEVs revealed a depletion of 4 miRNAs, miR-16-5p, miR-17~92 cluster-originated miR-17-5p/miR-20a-5p, and miR-106b-5p. Their expression decreased in sEVs from CKD patients as kidney function deteriorated. Transfection of VSMCs with each miRNA-mimic mitigated calcification. In silico analyses revealed VEGFA (vascular endothelial growth factor A) as a convergent target of these miRNAs. We found a 16-fold increase in VEGFA transcription in the thoracic aorta of CKD mice under a high-phosphorus diet, which GW4869 reversed. Inhibition of VEGFA-VEGFR2 signaling with sorafenib, fruquintinib, sunitinib, or VEGFR2-targeted siRNA mitigated calcification in VSMCs. Orally administered fruquintinib (2.5 mg/kg per day) for 4 weeks suppressed the transcription of osteogenic marker genes in the mouse aorta. The area under the curve of miR-16-5p, miR-17-5p, 20a-5p, and miR-106b-5p for the prediction of abdominal aortic calcification was 0.7630, 0.7704, 0.7407, and 0.7704, respectively. CONCLUSIONS: The miRNA transcriptomic signature of circulating sEVs uncovered their pathologic role, devoid of the calcification-protective miRNAs that target VEGFA signaling in CKD-driven vascular calcification. These sEV-propagated miRNAs are potential biomarkers and therapeutic targets for vascular calcification.
Assuntos
Vesículas Extracelulares , MicroRNAs , Insuficiência Renal Crônica , Calcificação Vascular , Ratos , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Calcificação Vascular/metabolismo , Insuficiência Renal Crônica/metabolismo , Vesículas Extracelulares/metabolismo , Fósforo/metabolismo , Miócitos de Músculo Liso/metabolismoRESUMO
Protein kinase A (PKA) directly phosphorylates aquaporin-2 (AQP2) water channels in renal collecting ducts to reabsorb water from urine for the maintenance of systemic water homeostasis. More than 50 functionally distinct PKA-anchoring proteins (AKAPs) respectively create compartmentalized PKA signaling to determine the substrate specificity of PKA. Identification of an AKAP responsible for AQP2 phosphorylation is an essential step toward elucidating the molecular mechanisms of urinary concentration. PKA activation by several compounds is a novel screening strategy to uncover PKA substrates whose phosphorylation levels were nearly perfectly correlated with that of AQP2. The leading candidate in this assay proved to be an AKAP termed lipopolysaccharide-responsive and beige-like anchor protein (LRBA). We found that LRBA colocalized with AQP2 in vivo, and Lrba knockout mice displayed a polyuric phenotype with severely impaired AQP2 phosphorylation. Most of the PKA substrates other than AQP2 were adequately phosphorylated by PKA in the absence of LRBA, demonstrating that LRBA-anchored PKA preferentially phosphorylated AQP2 in renal collecting ducts. Furthermore, the LRBA-PKA interaction, rather than other AKAP-PKA interactions, was robustly dissociated by PKA activation. AKAP-PKA interaction inhibitors have attracted attention for their ability to directly phosphorylate AQP2. Therefore, the LRBA-PKA interaction is a promising drug target for the development of anti-aquaretics.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Aquaporina 2 , Água Corporal , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Água Corporal/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Homeostase , Camundongos , FosforilaçãoRESUMO
Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a central kinase involved in energy homeostasis. Increased intracellular AMP levels result in AMPK activation through the binding of AMP to the γ-subunit of AMPK. Recently, we reported that AMP-induced AMPK activation is impaired in the kidneys in chronic kidney disease (CKD) despite an increase in the AMP/ATP ratio. However, the mechanisms by which AMP sensing is disrupted in CKD are unclear. Here, we identified mechanisms of energy homeostasis in which Unc-51-like kinase 1 (ULK1)-dependent phosphorylation of AMPKγ1 at Ser260/Thr262 promoting AMP sensitivity of AMPK. AMPK activation by AMP was impaired in Ulk1 knockout mice despite an increased AMP/ATP ratio. ULK1 expression is markedly downregulated in CKD kidneys, leading to AMP sensing failure. Additionally, MK8722, an allosteric AMPK activator, stimulated AMPK in the kidneys of a CKD mouse model (5/6th nephrectomy) via a pathway that is independent of AMP sensing. Thus, our study shows that MK8722 treatment significantly attenuates the deterioration of kidney function in CKD and may be a potential therapeutic option in CKD therapeutics.
Assuntos
Proteínas Quinases Ativadas por AMP , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Knockout , Insuficiência Renal Crônica , Animais , Insuficiência Renal Crônica/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Fosforilação , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Monofosfato de Adenosina/metabolismo , Rim/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática , Transdução de Sinais , Células HEK293 , Compostos de Bifenilo , Pironas , TiofenosRESUMO
AMP-activated protein kinase (AMPK) inactivation in chronic kidney disease (CKD) leads to energy status deterioration in the kidney, constituting the vicious cycle of CKD exacerbation. Unc-51-like kinase 1 (ULK1) is considered a downstream molecule of AMPK; however, it was recently reported that the activity of AMPK could be regulated by ULK1 conversely. We demonstrated that AMPK and ULK1 activities were decreased in the kidneys of CKD mice. However, whether and how ULK1 is involved in the underlying mechanism of CKD exacerbation remains unknown. In this study, we investigated the ULK1 involvement in CKD, using ULK1 knockout mice. The CKD model of Ulk1-/- mice exhibited significantly exacerbated renal function and worsening renal fibrosis. In the kidneys of the CKD model of Ulk1-/- mice, reduced AMPK and its downstream ß-oxidation could be observed, leading to an energy deficit of increased AMP/ATP ratio. In addition, AMPK signaling in the kidney was reduced in control Ulk1-/- mice with normal renal function compared to control wild-type mice, suggesting that ULK1 deficiency suppressed AMPK activity in the kidney. This study is the first to present ULK1 as a novel therapeutic target for CKD treatment, which regulates AMPK activity in the kidney.
Assuntos
Proteínas Quinases Ativadas por AMP , Insuficiência Renal Crônica , Camundongos , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Fosforilação , AutofagiaRESUMO
A subset of clear cell renal cell carcinomas (ccRCCs) exhibits various growth patterns that infiltrate the normal renal parenchyma; however, our understanding of its association with cancer aggressiveness is incomplete. Here, we show that the morphology of the tumor interface with normal renal parenchyma is robustly associated with cancer recurrence after surgery, even when compared with the TNM staging system or the World Health Organization/International Society of Urological Pathology (WHO/ISUP) nuclear grade in nonmetastatic ccRCC. Hematoxylin and eosin-stained slides of whole tissue sections from surgical specimens were analyzed using a cohort of 331 patients with nonmetastatic ccRCC treated with radical nephrectomy. The patients were classified into 10 subgroups based on our classification algorithms for assessing the tumor interface with normal renal parenchyma. Among the 10 subgroups, 4 subgroups consisting of 40 patients (12%) were identified to have aggressive forms of nonmetastatic ccRCC associated with poor prognosis and unified as renal parenchymal infiltration or micronodular spread (RPI/MNS) phenotypes. Multivariable analyses showed that RPI/MNS phenotypes were robustly associated with shorter disease-free survival, independently of existing pathological factors including the TNM staging system and WHO/ISUP nuclear grade. The hazard ratio was highest for RPI/MNS (4.62), followed by WHO/ISUP grades 3 to 4 (2.11) and ≥pT3a stage (2.05). In addition, we conducted genomic analyses using next-generation sequencing of infiltrative lesions in 18 patients with RPI/MNS and tumor lesions in 33 patients without RPI/MNS. Results showed that alterations in SETD2 and TSC1 might be associated with RPI/MNS phenotypes, whereas alterations in PBRM1 might be associated with non-RPI/MNS phenotypes. These data suggest that RPI/MNS may be associated with aggressive genomic backgrounds of ccRCC, although more comprehensive analyses with a larger sample size are required. Future studies may further elucidate the clinical implications of RPI/MNS, particularly for deciding the indication of adjuvant treatment after nephrectomy.
RESUMO
Fibronectin (FN) glomerulopathy (FNG), a rare autosomal hereditary renal disease, is characterized by proteinuria resulting from the massive accumulation of FN in the glomeruli. It typically affects individuals aged 10-50 years. In this report, we describe the case of a 57-year-old man who was diagnosed with FNG through genetic analysis and histological examination that revealed membranoproliferative glomerulonephritis. Despite treatment with prednisolone, the therapeutic response was unsatisfactory. Prednisolone was subsequently tapered and discontinued because the patient had pulmonary thromboembolism. Subsequent comprehensive genetic testing, which was initially not conducted because the patient's parents did not have a history of kidney disease, identified a known disease-causing variant in the FN1 gene, indicating a de novo variant. FNG was further confirmed by positive staining of glomeruli with FN using an IST-4 antibody. Although corticosteroid therapy is commonly employed as the initial treatment for MPGN, its appropriateness depends on the underlying etiology. Thus, clinicians must be aware of potential rare genetic causes underlying MPGN.
Assuntos
Glomerulonefrite Membranoproliferativa , Masculino , Humanos , Pessoa de Meia-Idade , Glomerulonefrite Membranoproliferativa/diagnóstico , Glomerulonefrite Membranoproliferativa/tratamento farmacológico , Glomerulonefrite Membranoproliferativa/genética , Glomérulos Renais , Rim , Prednisolona/uso terapêuticoRESUMO
OBJECTIVE: Previous studies reported mixed results on associations between dietary potassium intake and hyperkalemia in patients with chronic kidney disease (CKD). This study investigated the association between potassium intake from different food sources and hyperkalemia in patients with non-dialysis-dependent CKD. METHODS: A total of 285 patients were recruited at a university hospital and 2 city hospitals in Tokyo. Dietary potassium intake was estimated by a validated diet history questionnaire. Associations of potassium intake from all foods and individual food groups with serum potassium were examined by multivariable linear regression among potassium binder nonusers. An association between tertile groups of potassium intake and hyperkalemia, defined as serum potassium ≥5.0 mEq/L, was evaluated by multivariable logistic regression. RESULTS: Among 245 potassium binder nonusers, total potassium intake was weakly associated with serum potassium (regression coefficient = 0.147, 95% confidence interval (CI): 0.018-0.277), while an association with hyperkalemia was not observed (first vs third tertile: adjusted odds ratio = 0.98, 95% CI: 0.29-3.26). As for food groups, potassium intakes from potatoes, pulses, and green/yellow vegetables were positively associated with serum potassium. Patients in the highest tertile of potassium intake from potatoes had higher odds of hyperkalemia as compared to those in the lowest tertile (adjusted odds ratio = 4.12, 95% CI: 1.19-14.34). CONCLUSION: Total potassium intake was weakly associated with serum potassium, but not with hyperkalemia. Potassium intake from potatoes was associated with hyperkalemia. These findings highlight the importance of considering food sources of potassium in the management of hyperkalemia in CKD.
RESUMO
Aquaporin-2 (AQP2) water channels are proteins that are recycled between intracellular vesicles and the apical plasma membrane in renal collecting ducts. Lipopolysaccharide-responsive beige-like anchor protein (LRBA) is a protein kinase A (PKA) anchoring protein that creates compartmentalized PKA signalling responsible for AQP2 phosphorylation. In response to increased plasma osmolality, vasopressin/cyclic adenosine monophosphate (cAMP)/PKA signalling phosphorylates AQP2, promoting AQP2 trafficking into the apical plasma membrane and increasing water reabsorption from urine. However, the molecular mechanisms by which LRBA mediates vasopressin-induced AQP2 phosphorylation remain unknown. To investigate AQP2 intracellular localization and phosphorylation status in vivo, a density gradient ultracentrifugation technique was combined with an in situ proximity ligation assay, super-resolution structured illumination microscopy and immunoelectron microscopy. Most of the AQP2 was localized on the recycling endosome in the presence of tolvaptan, a vasopressin type 2 receptor (V2R) antagonist. Desmopressin, a V2R agonist, phosphorylated AQP2, translocating it from the recycling endosome to the apical plasma membrane. In contrast, LRBA was constitutively localized at the recycling endosome. Therefore, LRBA and AQP2 were well colocalized in the absence of vasopressin stimulation. The loss of LRBA/PKA signalling by Lrba knockout impaired vasopressin-induced AQP2 phosphorylation, resulting in AQP2 retention at the recycling endosome. Defective AQP2 trafficking caused low urinary concentrating ability in Lrba-/- mice. The LRBA-PKA complex created compartmentalized PKA signalling at the recycling endosome, which facilitated AQP2 phosphorylation in response to vasopressin. KEY POINTS: Membrane proteins are continuously internalized into the endosomal system via endocytosis, after which they are either recycled back to the plasma membrane or degraded at the lysosome. In T cells, lipopolysaccharide-responsive beige-like anchor protein (LRBA) binds directly to the cytotoxic T lymphocyte antigen 4 (CTLA-4), a checkpoint immune molecule, to prevent CTLA-4 lysosomal degradation and promote its vesicle recycling. LRBA has different physiological functions in renal collecting ducts. LRBA and aquaporin-2 (AQP2) water channels were colocalized on the recycling endosome in vivo in the absence of the anti-diuretic hormone vasopressin. LRBA promoted vasopressin-induced AQP2 trafficking, increasing water reabsorption from urine via AQP2. LRBA determined renal responsiveness to vasopressin at recycling endosomes. LRBA is a ubiquitously expressed anchor protein. LRBA signalosomes might regulate membrane trafficking of several constitutively recycled proteins at recycling endosomes.
Assuntos
Aquaporina 2 , Túbulos Renais Coletores , Camundongos , Animais , Aquaporina 2/metabolismo , Antígeno CTLA-4/metabolismo , Lipopolissacarídeos/metabolismo , Transporte Proteico , Vasopressinas/farmacologia , Vasopressinas/metabolismo , Endossomos/metabolismo , Antagonistas dos Receptores de Hormônios Antidiuréticos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Água/metabolismo , FosforilaçãoRESUMO
BACKGROUND: As messenger RNA (mRNA)-based vaccines for coronavirus disease 2019 (COVID-19) have been administered to millions of individuals worldwide, cases of de novo and relapsing glomerulonephritis after mRNA COVID-19 vaccination are increasing in the literature. While most previous publications reported glomerulonephritis after the first or second dose of an mRNA vaccine, few reports of glomerulonephritis occurring after the third dose of an mRNA vaccine currently exist. CASE PRESENTATION: We report a case of rapidly progressive glomerulonephritis in a patient following the third dose of an mRNA COVID-19 vaccine. A 77-year-old Japanese man with a history of hypertension and atrial fibrillation was referred to our hospital for evaluation of anorexia, pruritus, and lower extremity edema. One year before referral, he received two mRNA vaccines (BNT162b2) for COVID-19. Three months before the visit, he received a third mRNA vaccine (mRNA-1273) for COVID-19. On admission, the patient presented severe renal failure with a serum creatinine level of 16.29 mg/dL, which had increased from 1.67 mg/dL one month earlier, prompting us to initiate hemodialysis. Urinalysis showed nephrotic-range proteinuria and hematuria. Renal biopsy revealed mild mesangial proliferation and expansion, a lobular appearance, and double contours of the glomerular basement membrane. Renal tubules had severe atrophy. Immunofluorescence microscopy showed strong mesangial staining for IgA, IgM, and C3c. Electron microscopy exhibited mesangial and subendothelial electron-dense deposits, leading to a diagnosis of IgA nephropathy with membranoproliferative glomerulonephritis-like changes. The kidney function remained unchanged after steroid therapy. CONCLUSIONS: Although the link between renal lesions and mRNA vaccines remains unclear, a robust immune response induced by mRNA vaccines may play a role in the pathogenesis of glomerulonephritis. Further studies of the immunological effects of mRNA vaccines on the kidney are warranted.
Assuntos
COVID-19 , Glomerulonefrite por IGA , Glomerulonefrite Membranoproliferativa , Glomerulonefrite , Masculino , Humanos , Idoso , Glomerulonefrite por IGA/diagnóstico , Glomerulonefrite Membranoproliferativa/patologia , Vacinas contra COVID-19 , Vacina BNT162 , COVID-19/complicações , Glomerulonefrite/patologiaRESUMO
Gitelman syndrome (GS), an autosomal recessive kidney disorder, is characterized by hypokalemia, hypomagnesemia, hypocalciuria, and metabolic alkalosis. Generally, diagnosis is made in school-aged children but multiple cases have been diagnosed in adulthood. This study examines the phenotypic differences between genetically confirmed cases and mutation-negative cases in adults. A comprehensive screening of 168 genes, including GS-related genes, was performed for 84 independent individuals who were referred to our institute with a clinical diagnosis of GS. The cases of pseudo-Bartter syndrome (BS)/GS because of diuretic abuse or other causes, which was determined based on patients' medical records, were excluded during registration. Of these 70 eligible cases for analysis, 27 (38.6%) had genetic confirmation of GS, while 37 (52.8%) had no known variants associated with GS and were considered to be unsolved cases. Note that unsolved cases comprised older, mostly female, individuals with decreased kidney function and multiple basic features of GS. The phenotype of unsolved cases is similar to that of pseudo BS/GS cases, although these cases were excluded in advance. However, the genetic and autoimmune profiles of these unsolved cases have not yet been investigated to date. Therefore, these cases may be categorized into new disease groups.
Assuntos
Síndrome de Bartter , Síndrome de Gitelman , Hipopotassemia , Adulto , Síndrome de Bartter/genética , Feminino , Síndrome de Gitelman/complicações , Síndrome de Gitelman/diagnóstico , Síndrome de Gitelman/genética , Humanos , Hipopotassemia/complicações , Hipopotassemia/diagnóstico , Hipopotassemia/genética , Masculino , Mutação , FenótipoRESUMO
BACKGROUND: Lipid-metabolizing enzymes and their metabolites affect inflammation and fibrosis, but their roles in chronic kidney disease (CKD) have not been completely understood. METHODS: To clarify their role in CKD, we measured the mRNA levels of major lipid-metabolizing enzymes in 5/6 nephrectomized (Nx) kidneys of C57BL/6 J mice. Mediator lipidomics was performed to reveal lipid profiles of CKD kidneys. RESULTS: In 5/6 Nx kidneys, both mRNA and protein levels of Alox15 were higher when compared with those in sham kidneys. With respect to in situ hybridization, the mRNA level of Alox15 was higher in renal tubules of 5/6 Nx kidneys. To examine the role of Alox15 in CKD pathogenesis, we performed 5/6 Nx on Alox15-/- mice. Alox15-/- CKD mice exhibited better renal functions than wild-type mice. Interstitial fibrosis was also inhibited in Alox15-/- CKD mice. Mediator lipidomics revealed that Alox15-/- CKD mouse kidneys had significantly higher levels of PGD2 than the control. To investigate the effects of PGD2 on renal fibrosis, we administered PGD2 to TGF-ß1-stimulated NRK-52E cells and HK-2 cells, which lead to a dose-dependent suppression of type I collagen and αSMA in both cell lines. CONCLUSION: Increased PGD2 in Alox15-/- CKD mouse kidneys could inhibit fibrosis, thereby resulting in CKD improvement. Thus, Alox15 inhibition and PGD2 administration may be novel therapeutic targets for CKD.
Assuntos
Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Rim/patologia , Metabolismo dos Lipídeos/genética , Prostaglandina D2/genética , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/fisiopatologia , Actinas/genética , Actinas/metabolismo , Animais , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Linhagem Celular , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Fibrose , Humanos , Oxirredutases Intramoleculares/genética , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Lipocalinas/genética , Masculino , Camundongos Endogâmicos C57BL , Nefrectomia , Prostaglandina D2/farmacologia , RNA Mensageiro/metabolismo , Insuficiência Renal Crônica/patologiaRESUMO
BACKGROUND: Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a rare hereditary disease caused by a variety of genetic mutations. Carriers of a mutation in the responsible genes are at risk of reaching end-stage kidney disease typically in middle age. The frequency of this disease is assumed to be underestimated because of a lack of disease-specific signs. Pathological findings obtained from kidney of uromodulin related ADTKD (ADTKD-UMOD) patients are regarded as non-specific and less-informative for its diagnosis. This research was undertaken to evaluate the significance of kidney biopsy in ADTKD-UMOD patients. METHODS: Thirteen patients from 10 families with nine identified uromodulin (UMOD) gene mutations who underwent kidney biopsy in the past were studied. Their kidney tissues were stained with anti-UMOD antibody in addition to conventional methods such as PAS staining. When positive, the numbers of tubules with visible UMOD protein accumulations were calculated based on the total numbers of UMOD expressing tubules. Pathological findings such as tubulointerstitial fibrosis, atrophy, inflammation and glomerulosclerosis were also evaluated and analyzed. RESULTS: Interstitial fibrosis and tubular atrophy were present in all 13 patients. Most atrophic tubules with thickening and lamellation of tubular basement membranes showed negative UMOD staining. In all but two patients with C94F mutations, massive accumulation of UMOD proteins was observed in the renal endoplasmic reticulum. UMOD accumulations were also detectable by PAS staining as polymorphic unstructured materials in the 11 patients at frequencies of 2.6-53.4%. 80.4% of the UMOD accumulations were surrounded by halos. The detection rate of UMOD accumulations positively correlated with eGFR. Glomerulosclerosis was detected in 11/13 patients, with a frequency of 20.0 to 61.1%, while no cystic dilatations of glomeruli were detected. CONCLUSIONS: Massively accumulated UMOD proteins in ADTKD-UMOD kidneys are detectable not only by immunostaining using anti-UMOD antibody but also by conventional methods such as PAS staining, although their detection is not easy. These findings can provide important clues to the diagnosis of ADTKD-UMOD. Kidney biopsy in ADTKD-UMOD may be more informative than assumed previously.
Assuntos
Rim/patologia , Rim Policístico Autossômico Dominante/patologia , Adolescente , Adulto , Biópsia , Feminino , Humanos , Túbulos Renais , Masculino , Pessoa de Meia-Idade , Mutação , Rim Policístico Autossômico Dominante/genética , Sensibilidade e Especificidade , Uromodulina/genética , Adulto JovemRESUMO
The inappropriate over-activation of the with-no-lysine kinase (WNK)-STE20/SPS1-related proline/alanine-rich kinase (SPAK)-sodium chloride cotransporter (NCC) phosphorylation cascade increases sodium reabsorption in distal kidney nephrons, resulting in salt-sensitive hypertension. Although chronic kidney disease (CKD) is a common cause of salt-sensitive hypertension, the involvement of the WNK phosphorylation cascade is unknown. Moreover, the effect of immune systems on WNK kinases has not been investigated despite the fact that immune systems are important for salt sensitivity. Here we demonstrate that the protein abundance of WNK1, but not of WNK4, was increased at the distal convoluted tubules in the aristolochic acid nephropathy mouse model of CKD. Accordingly, the phosphorylation of both SPAK and NCC was also increased. Moreover, a high-salt diet did not adequately suppress activation of the WNK1-SPAK-NCC phosphorylation cascade in this model, leading to salt-sensitive hypertension. WNK1 also was increased in adenine nephropathy, but not in subtotal nephrectomy, models of CKD. By comparing the transcripts of these three models focusing on immune systems, we hypothesized that tumor necrosis factor (TNF)-α regulates WNK1 protein expression. In fact, TNF-α increased WNK1 protein expression in cultured renal tubular cells by reducing the transcription and protein levels of NEDD4-2 E3-ligase, which degrades WNK1 protein. Furthermore, the TNF-α inhibitor etanercept reversed the reduction of NEDD4-2 expression and upregulation of the WNK1-SPAK-NCC phosphorylation cascade in distal convoluted tubules in vivo in the aristolochic acid nephropathy model. Thus, salt-sensitive hypertension is induced in CKD via activation of the renal WNK1- SPAK-NCC phosphorylation cascade by TNF-α, reflecting a link with the immune system.
Assuntos
Hipertensão , Insuficiência Renal Crônica , Animais , Hipertensão/induzido quimicamente , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Fator de Necrose Tumoral alfa , Proteína Quinase 1 Deficiente de Lisina WNKRESUMO
With-no-lysine kinase (WNK) plays important roles in regulating electrolyte homeostasis, cell signaling, survival, and proliferation. It has been recently demonstrated that WNK1, a member of the WNK family, modifies the function of immune cells. Here we report that in macrophages, WNK1 has suppressive effects on lipopolysaccharide (LPS)-induced inflammatory responses via TGFß-activated kinase 1 (TAK1)-mediated activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway. We found that WNK1 heterozygous (WNK1+/-) mice produced excessive proinflammatory cytokines in an experimental LPS-induced sepsis model, and peritoneal macrophages isolated from WNK1+/- mice produced higher levels of LPS-induced cytokines and NOS2 expression as canonical proinflammatory M1 macrophage markers. We confirmed that small hairpin RNA (shRNA)-mediated knockdown of WNK1 activated LPS-induced cytokine production and NOS2 expression in RAW 264.7 macrophages. Moreover, we demonstrated that WNK1 knockdown increased the nuclear translocation of NF-κB and activated the p38 and Jun N-terminal kinase (JNK) MAPK signaling pathway and that a TAK1 inhibitor diminished these effects of WNK1 knockdown. These results suggest that WNK1 acts as a physiologic immune modulator via interactions with TAK1. WNK1 may be a therapeutic target against the cytokine storm caused by sepsis.
Assuntos
Citocinas/biossíntese , MAP Quinase Quinase Quinases/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Sepse/imunologia , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Animais , Células Cultivadas , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos , MAP Quinase Quinase Quinases/fisiologia , Sistema de Sinalização das MAP Quinases , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Células RAW 264.7 , Sepse/induzido quimicamente , Sepse/enzimologia , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Proteína Quinase 1 Deficiente de Lisina WNK/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
BACKGROUND: Tolvaptan is the only therapeutic drug for autosomal dominant polycystic kidney disease (ADPKD). The influence of mutations in polycystic kidney disease 1 and 2 genes (PKD1 and PKD2) on the treatment effects of tolvaptan is not well documented in the literature. METHODS: We retrospectively evaluated the relationship between genotype and the efficacy of tolvaptan in 18 patients with ADPKD who had been treated at Toranomon Hospital and undergone genetic testing between April 2016 and February 2020. RESULTS: The annual change in estimated glomerular filtration rate (ΔeGFR/y) from before to after tolvaptan was from a median of -5.5 to -2.5 mL/min/1.73 m2 in the PKD1 truncating group, -3.3 to -2.4 mL/min/1.73 m2 in the PKD1 non-truncating group, -3.1 to -1.6 mL/min/1.73 m2 in the PKD2 group, and -1.9 to -2.6 mL/min/1.73 m2 in the group with no PKD1/2 mutation. The median degrees of improvement of ΔeGFR/y were 2.5 (45%), 0.4 (10%), 0.6 (28%), and -0.7 (-37%) mL/min/1.73 m2, respectively. Compared with the group of patients with any PKD1/2 mutation, the group with no PKD1/2 mutation showed significantly less improvement in ΔeGFR/y with tolvaptan (0.6 vs. -0.7 mL/min/1.73 m2, respectively; p = 0.01) and significantly less improvement in the annual rate of increase in total kidney volume (TKV) with tolvaptan (-6.7 vs. -1.1%, respectively; p = 0.02). CONCLUSION: Patients with ADPKD and no PKD1/2 mutation showed less improvement in ΔeGFR/y and the annual rate of increase in TKV with tolvaptan. Detecting PKD1/2 mutations may be useful for predicting the effectiveness of tolvaptan.
Assuntos
Resistência a Medicamentos/genética , Rim Policístico Autossômico Dominante/tratamento farmacológico , Canais de Cátion TRPP/genética , Tolvaptan/farmacologia , Adulto , Feminino , Testes Genéticos , Taxa de Filtração Glomerular/efeitos dos fármacos , Taxa de Filtração Glomerular/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/fisiopatologia , Estudos Retrospectivos , Tolvaptan/uso terapêuticoRESUMO
We report here structural development of N-(4-phenoxyphenyl)benzamide derivatives as novel SPAK (STE20/SPS1-related proline/alanine-rich kinase) inhibitors. Abnormal activation of the signal cascade of with-no-lysine kinase (WNK) with OSR1 (oxidative stress-responsive kinase 1)/SPAK and NCC (NaCl cotransporter) results in characteristic salt-sensitive hypertension, and therefore inhibitors of the WNK-OSR1/SPAK-NCC cascade are candidates for antihypertensive drugs. Based on the structure of lead compound 2, we examined the SAR of N-(4-phenoxyphenyl)benzamide derivatives, and developed compound 20l as a potent SPAK inhibitor. Compounds 20l is a promising candidate for a new class of antihypertensive drugs.
Assuntos
Anti-Hipertensivos/química , Benzamidas/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Anti-Hipertensivos/metabolismo , Anti-Hipertensivos/farmacologia , Benzamidas/metabolismo , Benzamidas/farmacologia , Humanos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Relação Estrutura-Atividade , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismoRESUMO
Pseudohypoaldosteronism type II (PHA II) is inherited in an autosomal dominant manner and is characterized by hypertension, hyperkalemia, and hyperchloremic metabolic acidosis. The enhancement of with-no-lysine kinase (WNK) functions is correlated to the pathogenesis of the condition. Cullin 3 (CUL3) forms an E3 ubiquitin ligase complex, and it can ubiquitinate WNK. Most CUL3 gene mutations are distributed in sites, such as intron 8 splice acceptor, intron 9 splice donor, and putative intron 8 splice branch sites, which are involved in the splicing of exon 9. These mutations result in the deletion of exon 9, which reduces the activity of ubiquitination against WNK and inhibits the degradation of WNK. In this report, we identified a novel CUL3 c.1312A>G mutation in familial cases. A mutation prediction software showed that the significance of these mutations was not clear. However, using the Human Splicing Finder 3.1 software, in silico analyses revealed that these mutations induced splicing alterations, which affected the sites of exon 9, altered the balance between predicted exonic splicing enhancers and silencers, and led to the deletions of exon 9. This study presented a novel pathogenic splicing variant to the CUL3 mutation and provided a reference for further research about the mechanisms of splicing. Moreover, it showed that not only amino acid substitution caused by nonsynonymous mutations but also splicing motif changes due to base substitutions have important roles in the pathogenesis of PHA II.
Assuntos
Proteínas Culina/genética , Mutação/genética , Pseudo-Hipoaldosteronismo/genética , Éxons/genética , Feminino , Humanos , Lactente , Pseudo-Hipoaldosteronismo/diagnósticoRESUMO
BACKGROUND: Renal hypouricemia (RHUC) is a genetic disorder caused by mutations in the SLC22A12 gene, which encodes the major uric acid (UA) transporter, URAT1. The clinical course of related, living donor-derived RHUC in patients undergoing kidney transplantation is poorly understood. Here, we report a case of kidney transplantation from a living relative who had an SLC22A12 mutation. After the transplantation, the recipient's fractional excretion of UA (FEUA) decreased, and chimeric tubular epithelium was observed. CASE PRESENTATION: A 40-year-old man underwent kidney transplantation. His sister was the kidney donor. Three weeks after the transplantation, he had low serum-UA, 148.7 µmol/L, and elevated FEUA, 20.8% (normal: < 10%). The patient's sister had low serum-UA (101.1 µmol/L) and high FEUA (15.8%) before transplant. Suspecting RHUC, we performed next-generation sequencing on a gene panel containing RHUC-associated genes. A heterozygous missense mutation in the SLC22A12 gene was detected in the donor, but not in the recipient. The recipient's serum-UA level increased from 148.7 µmol/L to 231.9 µmol/L 3 months after transplantation and was 226.0 µmol/L 1 year after transplantation. His FEUA decreased from 20.8 to 11.7% 3 months after transplantation and was 12.4% 1 year after transplantation. Fluorescence in situ hybridization of allograft biopsies performed 3 months and 1 year after transplantation showed the presence of Y chromosomes in the tubular epithelial cells, suggesting the recipient's elevated serum-UA levels were owing to a chimeric tubular epithelium. CONCLUSIONS: We reported on a kidney transplant recipient that developed RHUC owing to his donor possessing a heterozygous mutation in the SLC22A12 (URAT1) gene. Despite this mutation, the clinical course was not problematic. Thus, the presence of donor-recipient chimerism in the tubular epithelium might positively affect the clinical course, at least in the short-term.
Assuntos
Transplante de Rim , Túbulos Renais/metabolismo , Doadores Vivos , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Erros Inatos do Transporte Tubular Renal/genética , Ácido Úrico/metabolismo , Cálculos Urinários/genética , Adulto , Quimerismo , Feminino , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação de Sentido Incorreto , Eliminação Renal/genética , Erros Inatos do Transporte Tubular Renal/metabolismo , Irmãos , Cálculos Urinários/metabolismoRESUMO
The kidneys consume a large amount of energy to regulate volume status and blood pressure and to excrete uremic toxins. The identification of factors that cause energy mismatch in the setting of chronic kidney disease (CKD) and the development of interventions aimed at improving this mismatch are key research imperatives. Although the critical cellular energy sensor 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is known to be inactivated in CKD, the mechanism of AMPK dysregulation is unknown. In a mouse model of CKD, metabolome analysis confirmed a decrease in AMPK activation in the kidneys despite a high AMP: ATP ratio, suggesting that AMPK did not sense energy depletion. Similar AMPK inactivation was found in heart and skeletal muscle in CKD mice. Several uremic factors were shown to inactivate AMPK in vitro and in ex vivo preparations of kidney tissue. The specific AMPK activator A-769662, which bypasses the AMP sensing mechanism, ameliorated fibrosis and improved energy status in the kidneys of CKD mice, whereas an AMP analog did not. We further demonstrated that a low-protein diet activated AMPK independent of the AMP sensing mechanism, leading to improvement in energy metabolism and kidney fibrosis. These results suggest that a failure to sense AMP is the key mechanism underlying the vicious cycle of energy depletion and CKD progression and direct AMPK activation may be a novel therapeutic approach in CKD.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Dieta com Restrição de Proteínas , Metabolismo Energético/fisiologia , Rim/patologia , Insuficiência Renal Crônica/patologia , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Compostos de Bifenilo , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Fibrose/metabolismo , Humanos , Rim/metabolismo , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Pironas/farmacologia , Insuficiência Renal Crônica/dietoterapia , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tiofenos/farmacologiaRESUMO
Type 4 Bartter syndrome (BS) is caused by genetic mutations in barttin, which is coded for by BSND. Barttin serves as the ß-subunit of the ClC-K chloride (Cl-) channel, which is widely expressed in distal nephrons. Type 4 BS is characterized by severely impaired reabsorption of salt, which may cause polyuria, hypokalemia, and metabolic alkalosis. Calcineurin inhibitors reportedly induce renal salt retention and hyperkalemia by enhancing the phosphorylation of the sodium (Na+)-potassium (K+)-2Cl- cotransporter (NKCC2) and Na+-Cl- cotransporter (NCC). In addition, we have previously reported that tacrolimus, a calcineurin inhibitor, increases the levels of phosphorylated NCC. In this study, we administered tacrolimus to barttin hypomorphic (Bsndneo/neo) mice, a murine model of type 4 BS that exhibits polyuria, hypokalemia, and metabolic alkalosis. Administration of tacrolimus increased the serum K+ level and suppressed urinary K+ excretion. Furthermore, after treatment with tacrolimus, Bsndneo/neo mice increased levels of phosphorylated NCC and NKCC2. We conclude that tacrolimus partially improves clinical phenotypes of Bsndneo/neo mice, and that calcineurin inhibitors might be effective for treating type 4 BS.