Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Development ; 148(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34228796

RESUMO

The trachea delivers inhaled air into the lungs for gas exchange. Anomalies in tracheal development can result in life-threatening malformations, such as tracheoesophageal fistula and tracheomalacia. Given the limitations of current therapeutic approaches, development of technologies for the reconstitution of a three-dimensional trachea from stem cells is urgently required. Recently, single-cell sequencing technologies and quantitative analyses from cell to tissue scale have been employed to decipher the cellular basis of tracheal morphogenesis. In this Review, recent advances in mammalian tracheal development and the generation of tracheal tissues from pluripotent stem cells are summarized.


Assuntos
Pulmão/crescimento & desenvolvimento , Morfogênese/fisiologia , Traqueia/crescimento & desenvolvimento , Fístula Traqueoesofágica/patologia , Animais , Cartilagem/crescimento & desenvolvimento , Diferenciação Celular , Epitélio , Humanos , Mesoderma/crescimento & desenvolvimento , Camundongos , Morfogênese/genética , Sistema Respiratório , Traqueia/anormalidades , Traqueomalácia , Transcriptoma
2.
Stem Cells ; 41(8): 809-820, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37468433

RESUMO

Single-cell RNA sequencing is a valuable tool for dissecting cellular heterogeneity in complex systems. However, it is still challenging to estimate the proliferation and differentiation potentials of subpopulations within dormant tissue stem cells. Here, we established a new single-cell analysis method for profiling the organoid-forming capacity and differentiation potential of tissue stem cells to disclose stem cell subpopulations by integrating single-cell morphometrics, organoid-forming assay, and RNA sequencing, a method named scMORN. To explore lung epithelial stem cells, we initially developed feeder-free culture system, which could expand all major lung stem cells, including basal, club, and alveolar type 2 (AT2) cells, and found that club cells contained a subpopulation, which showed better survival rate and high proliferation capacity and could differentiate into alveolar cells. Using the scMORN method, we discovered a club cell subpopulation named Muc5b+ and large club (ML-club) cells that efficiently formed organoids than other club or AT2 cells in our feeder-free organoid culture and differentiated into alveolar cells in vitro. Single-cell transcriptome profiling and immunohistochemical analysis revealed that ML-club cells localized at the intrapulmonary proximal airway and distinct from known subpopulations of club cells such as BASCs. Furthermore, we identified CD14 as a cell surface antigen of ML-club cells and showed that purified CD14+ club cells engrafted into injured mouse lungs had better engraftment rate and expansion than other major lung stem cells, reflecting the observations in organoid culture systems. The scMORN method could be adapted to different stem cell tissues to discover useful stem-cell subpopulations.


Assuntos
Pulmão , Transcriptoma , Animais , Camundongos , Transcriptoma/genética , Células-Tronco/metabolismo , Organoides/metabolismo , Perfilação da Expressão Gênica , Diferenciação Celular
3.
Dev Dyn ; 250(11): 1552-1567, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33840142

RESUMO

The trachea is a rigid air duct with some mobility, which comprises the upper region of the respiratory tract and delivers inhaled air to alveoli for gas exchange. During development, the tracheal primordium is first established at the ventral anterior foregut by interactions between the epithelium and mesenchyme through various signaling pathways, such as Wnt, Bmp, retinoic acid, Shh, and Fgf, and then segregates from digestive organs. Abnormalities in this crosstalk result in lethal congenital diseases, such as tracheal agenesis. Interestingly, these molecular mechanisms also play roles in tissue regeneration in adulthood, although it remains less understood compared with their roles in embryonic development. In this review, we discuss cellular and molecular mechanisms of trachea development that regulate the morphogenesis of this simple tubular structure and identities of individual differentiated cells. We also discuss how the facultative regeneration capacity of the epithelium is established during development and maintained in adulthood.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Organogênese , Endoderma/metabolismo , Feminino , Humanos , Mesoderma/metabolismo , Organogênese/fisiologia , Gravidez , Traqueia/anormalidades
4.
Blood ; 132(11): 1167-1179, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-29853539

RESUMO

Platelets participate in not only thrombosis and hemostasis but also other pathophysiological processes, including tumor metastasis and inflammation. However, the putative role of platelets in the development of solid organs has not yet been described. Here, we report that platelets regulate lung development through the interaction between the platelet-activation receptor, C-type lectin-like receptor-2 (Clec-2; encoded by Clec1b), and its ligand, podoplanin, a membrane protein. Clec-2 deletion in mouse platelets led to lung malformation, which caused respiratory failure and neonatal lethality. In these embryos, α-smooth muscle actin-positive alveolar duct myofibroblasts (adMYFs) were almost absent in the primary alveolar septa, which resulted in loss of alveolar elastic fibers and lung malformation. Our data suggest that the lack of adMYFs is caused by abnormal differentiation of lung mesothelial cells (luMCs), the major progenitor of adMYFs. In the developing lung, podoplanin expression is detected in alveolar epithelial cells (AECs), luMCs, and lymphatic endothelial cells (LECs). LEC-specific podoplanin knockout mice showed neonatal lethality and Clec1b-/--like lung developmental abnormalities. Notably, these Clec1b-/--like lung abnormalities were also observed after thrombocytopenia or transforming growth factor-ß depletion in fetuses. We propose that the interaction between Clec-2 on platelets and podoplanin on LECs stimulates adMYF differentiation of luMCs through transforming growth factor-ß signaling, thus regulating normal lung development.


Assuntos
Plaquetas/metabolismo , Diferenciação Celular/fisiologia , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Alvéolos Pulmonares/embriologia , Transdução de Sinais/fisiologia , Animais , Plaquetas/citologia , Células Endoteliais , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Lectinas Tipo C/genética , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Alvéolos Pulmonares/citologia , Mucosa Respiratória/citologia , Mucosa Respiratória/embriologia
5.
Dev Growth Differ ; 62(1): 67-79, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31613406

RESUMO

The respiratory system has ideal tissue structure and cell types for efficient gas exchange to intake oxygen and release carbon dioxide. This complex system develops through orchestrated intercellular signaling among various cell types, such as club, ciliated, basal, neuroendocrine, AT1, AT2, endothelial, and smooth muscle cells. Notch signaling is a highly conserved cell-cell signaling pathway ideally suited for very short-range cellular communication because Notch signals are transmitted by direct contact with an adjacent cell. Enthusiastic efforts by Notch researchers over the last two decades have led to the identification of critical roles of this signaling pathway during development, homeostasis, and regeneration of the respiratory system. The dysregulation of Notch signaling results in a wide range of respiratory diseases such as pulmonary artery hypertension (PAH), chronic obstructive pulmonary disease (COPD), interstitial pulmonary fibrosis (IPF), and lung cancer. Thus, a deep understanding of the biological functions of Notch signaling will help identify novel treatment targets in various respiratory diseases.


Assuntos
Homeostase , Pneumopatias , Pulmão/fisiologia , Receptores Notch , Regeneração , Transdução de Sinais , Traqueia/fisiologia , Doenças da Traqueia , Animais , Humanos , Pneumopatias/genética , Pneumopatias/metabolismo , Pneumopatias/patologia , Receptores Notch/genética , Receptores Notch/metabolismo , Doenças da Traqueia/genética , Doenças da Traqueia/metabolismo , Doenças da Traqueia/patologia
6.
Proc Natl Acad Sci U S A ; 113(29): 8242-7, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27364009

RESUMO

Abnormal enlargement of the alveolar spaces is a hallmark of conditions such as chronic obstructive pulmonary disease and bronchopulmonary dysplasia. Notch signaling is crucial for differentiation and regeneration and repair of the airway epithelium. However, how Notch influences the alveolar compartment and integrates this process with airway development remains little understood. Here we report a prominent role of Notch signaling in the epithelial-mesenchymal interactions that lead to alveolar formation in the developing lung. We found that alveolar type II cells are major sites of Notch2 activation and show by Notch2-specific epithelial deletion (Notch2(cNull)) a unique contribution of this receptor to alveologenesis. Epithelial Notch2 was required for type II cell induction of the PDGF-A ligand and subsequent paracrine activation of PDGF receptor-α signaling in alveolar myofibroblast progenitors. Moreover, Notch2 was crucial in maintaining the integrity of the epithelial and smooth muscle layers of the distal conducting airways. Our data suggest that epithelial Notch signaling regulates multiple aspects of postnatal development in the distal lung and may represent a potential target for intervention in pulmonary diseases.


Assuntos
Pulmão/metabolismo , Receptor Notch2/metabolismo , Mucosa Respiratória/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Células Epiteliais/metabolismo , Fucosiltransferases/genética , Pulmão/anatomia & histologia , Camundongos Transgênicos , Músculo Liso/anatomia & histologia , Músculo Liso/metabolismo , Receptor Notch1/genética , Receptor Notch2/genética , Mucosa Respiratória/anatomia & histologia , Transdução de Sinais
7.
Development ; 142(14): 2452-63, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26062937

RESUMO

Although Notch1 and Notch2 are closely related paralogs and function through the same canonical signaling pathway, they contribute to different outcomes in some cell and disease contexts. To understand the basis for these differences, we examined in detail mice in which the Notch intracellular domains (N1ICD and N2ICD) were swapped. Our data indicate that strength (defined here as the ultimate number of intracellular domain molecules reaching the nucleus, integrating ligand-mediated release and nuclear translocation) and duration (half-life of NICD-RBPjk-MAML-DNA complexes, integrating cooperativity and stability dependent on shared sequence elements) are the factors that underlie many of the differences between Notch1 and Notch2 in all the contexts we examined, including T-cell development, skin differentiation and carcinogenesis, the inner ear, the lung and the retina. We were able to show that phenotypes in the heart, endothelium, and marginal zone B cells are attributed to haploinsufficiency but not to intracellular domain composition. Tissue-specific differences in NICD stability were most likely caused by alternative scissile bond choices by tissue-specific γ-secretase complexes following the intracellular domain swap. Reinterpretation of clinical findings based on our analyses suggests that differences in outcome segregating with Notch1 or Notch2 are likely to reflect outcomes dependent on the overall strength of Notch signals.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Alelos , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Carcinogênese , Diferenciação Celular , Separação Celular , Orelha Interna/embriologia , Feminino , Citometria de Fluxo , Cardiopatias Congênitas , Homozigoto , Pulmão/embriologia , Masculino , Camundongos , Fenótipo , Estrutura Terciária de Proteína , Retina/embriologia , Transdução de Sinais , Pele/embriologia , Neoplasias Cutâneas/metabolismo , Linfócitos T/citologia , Transcriptoma
8.
Dev Biol ; 400(1): 139-47, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25678108

RESUMO

The Wolffian duct (WD) is a primordium of the male reproductive tract and kidney collecting duct system. Fibroblast growth factor receptors (FGFRs), members of the receptor tyrosine kinase (RTK) family, are essential for kidney development. Although the functions of FGFR signaling in kidney morphogenesis have been analyzed, their function in WD development has not been comprehensively investigated. Here, we demonstrate that Fgfr2 is the major Fgfr gene expressed throughout the WD epithelia and that it is essential for the maintenance of the WD, specifically in the caudal part of the WD. Hoxb7-Cre mediated inactivation of Fgfr2 in the mouse WD epithelia resulted in the regression of the caudal part of the WD and abnormal male reproductive tract development. Cell proliferation and expression of the downstream target genes of RTK signaling (Etv4 and Etv5) were decreased in the caudal part of the WD epithelia in the mutant embryos. Cranial (rostral) WD formation and ureteric budding were not affected. Ret, Etv4, and Etv5 expression were sustained in the ureteric bud of the mutant embryos. Taken together, these data suggest region-specific requirements for FGFR2 signaling in the developing caudal WD epithelia.


Assuntos
Proliferação de Células/fisiologia , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Ductos Mesonéfricos/embriologia , Animais , Técnicas Histológicas , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Modelos Genéticos
9.
Development ; 139(23): 4365-73, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23132245

RESUMO

In the developing lung, it is thought that the terminal buds of elongating airways contain a population of multipotent epithelial progenitors. As the bronchial tree extends, descendants of these cells give rise to lineage-restricted progenitors in the conducting airways via Notch signaling, which is involved in the establishment of epithelial Clara, ciliated and pulmonary neuroendocrine (NE) cell populations. However, the precise molecular details of this selection process are still emerging. Our stepwise removal of the three Notch receptors from the developing lung epithelium reveals that, whereas Notch2 mediates the Clara/ciliated cell fate decision with negligible contributions from Notch1 and Notch3, all three Notch receptors contribute in an additive manner to regulate the abundance of NE cells and the size of the presumptive pulmonary neuroepithelial body (pNEB) as a result of mutual interactions between NE cells and the Notch-dependent, SSEA-1(+), CC10(-) cell population surrounding the pNEB (SPNC cells). Ectopic expression of the Notch1 or Notch2 intracellular domain was sufficient to induce SSEA-1(+) cells and to suppress pNEB formation without expending Clara cells. We provide evidence that the additive functions of Notch receptors, together with other signaling pathways, maintains the expression of Hes1, a key regulator of NE cell fate, and that maintenance of Hes1 expression in epithelial cells is key to the regulation of pNEB size. These results suggest that two different assemblies of Notch receptors coordinate the numbers and distribution of the major epithelial cell types in the conducting airway during lung organogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Proteínas de Homeodomínio/biossíntese , Pulmão/embriologia , Células Neuroendócrinas/fisiologia , Corpos Neuroepiteliais/metabolismo , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Mucosa Respiratória/citologia , Animais , Diferenciação Celular , Células Epiteliais/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Antígenos CD15/biossíntese , Antígenos CD15/genética , Antígenos CD15/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/biossíntese , Receptor Notch1/biossíntese , Receptor Notch2/biossíntese , Mucosa Respiratória/embriologia , Mucosa Respiratória/metabolismo , Sistema Respiratório/metabolismo , Transdução de Sinais , Fatores de Transcrição HES-1 , Uteroglobina/biossíntese
10.
Nat Commun ; 14(1): 4956, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653024

RESUMO

The molecular etiology of idiopathic pulmonary fibrosis (IPF) has been extensively investigated to identify new therapeutic targets. Although anti-inflammatory treatments are not effective for patients with IPF, damaged alveolar epithelial cells play a critical role in lung fibrogenesis. Here, we establish an organoid-based lung fibrosis model using mouse and human lung tissues to assess the direct communication between damaged alveolar type II (AT2)-lineage cells and lung fibroblasts by excluding immune cells. Using this in vitro model and mouse genetics, we demonstrate that bleomycin causes DNA damage and activates p53 signaling in AT2-lineage cells, leading to AT2-to-AT1 transition-like state with a senescence-associated secretory phenotype (SASP). Among SASP-related factors, TGF-ß plays an exclusive role in promoting lung fibroblast-to-myofibroblast differentiation. Moreover, the autocrine TGF-ß-positive feedback loop in AT2-lineage cells is a critical cellular system in non-inflammatory lung fibrogenesis. These findings provide insights into the mechanism of IPF and potential therapeutic targets.


Assuntos
Fibrose Pulmonar Idiopática , Fator de Crescimento Transformador beta , Humanos , Animais , Camundongos , Retroalimentação , Células Epiteliais Alveolares , Fibrose Pulmonar Idiopática/genética , Diferenciação Celular
11.
J Cell Sci ; 123(Pt 2): 213-24, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20048339

RESUMO

Lung development is the result of complex interactions between four tissues: epithelium, mesenchyme, mesothelium and endothelium. We marked the lineages experiencing Notch1 activation in these four cellular compartments during lung development and complemented this analysis by comparing the cell fate choices made in the absence of RBPjkappa, the essential DNA binding partner of all Notch receptors. In the mesenchyme, RBPjkappa was required for the recruitment and specification of arterial vascular smooth muscle cells (vSMC) and for regulating mesothelial epithelial-mesenchymal transition (EMT), but no adverse affects were observed in mice lacking mesenchymal RBPjkappa. We provide indirect evidence that this is due to vSMC rescue by endothelial-mesenchymal transition (EnMT). In the epithelium, we show that Notch1 activation was most probably induced by Foxj1-expressing cells, which suggests that Notch1-mediated lateral inhibition regulates the selection of Clara cells at the expense of ciliated cells. Unexpectedly, and in contrast to Pofut1-null epithelium, Hes1 expression was only marginally reduced in RBPjkappa-null epithelium, with a corresponding minimal effect on pulmonary neuroendocrine cell fate selection. Collectively, the primary roles for canonical Notch signaling in lung development are in selection of Clara cell fate and in vSMC recruitment. These analyses suggest that the impact of gamma-secretase inhibitors on branching in vitro reflect a non-cell autonomous contribution from endothelial or vSMC-derived signals.


Assuntos
Artérias/citologia , Linhagem da Célula , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Miócitos de Músculo Liso/citologia , Receptores Notch/metabolismo , Transdução de Sinais , Envelhecimento/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Cílios/efeitos dos fármacos , Cílios/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/embriologia , Epitélio/metabolismo , Proteínas de Homeodomínio/metabolismo , Pulmão/citologia , Pulmão/embriologia , Mesoderma/citologia , Mesoderma/efeitos dos fármacos , Mesoderma/metabolismo , Camundongos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição HES-1 , Fator de Crescimento Transformador beta/farmacologia , Uteroglobina/metabolismo
13.
PLoS Biol ; 7(5): e1000067, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19557146

RESUMO

Asthma is a common allergic lung disease frequently affecting individuals with a prior history of eczema/atopic dermatitis (AD); however, the mechanism underlying the progression from AD to asthma (the so-called "atopic march") is unclear. Here we show that, like humans with AD, mice with skin-barrier defects develop AD-like skin inflammation and are susceptible to allergic asthma. Furthermore, we show that thymic stromal lymphopoietin (TSLP), overexpressed by skin keratinocytes, is the systemic driver of this bronchial hyper-responsiveness. As an AD-like model, we used mice with keratinocyte-specific deletion of RBP-j that sustained high systemic levels of TSLP. Antigen-induced allergic challenge to the lung airways of RBP-j-deficient animals resulted in a severe asthmatic phenotype not seen in similarly treated wild-type littermates. Elimination of TSLP signaling in these animals blocked the atopic march, demonstrating that high serum TSLP levels were required to sensitize the lung to allergic inflammation. Furthermore, we analyzed outbred K14-TSLP(tg) mice that maintained high systemic levels of TSLP without developing any skin pathology. Importantly, epidermal-derived TSLP was sufficient to trigger the atopic march, sensitizing the lung airways to inhaled allergens in the absence of epicutaneous sensitization. Based on these findings, we propose that in addition to early treatment of the primary skin-barrier defects, selective inhibition of systemic TSLP may be the key to blocking the development of asthma in AD patients.


Assuntos
Asma/etiologia , Citocinas/metabolismo , Dermatite Atópica/complicações , Progressão da Doença , Pele/metabolismo , Animais , Asma/metabolismo , Asma/fisiopatologia , Dermatite Atópica/metabolismo , Dermatite Atópica/patologia , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/deficiência , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Pele/patologia , Pele/fisiopatologia , Linfopoietina do Estroma do Timo
14.
Nat Protoc ; 17(11): 2699-2719, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35978039

RESUMO

Development of visceral organs such as the esophagus, lung, liver and stomach are coordinated by reciprocal signaling interactions between the endoderm and adjacent mesoderm cells in the fetal foregut. Although the recent successes in recapitulating developmental signaling in vitro has enabled the differentiation of human pluripotent stem cells (hPSCs) into various types of organ-specific endodermal epithelium, the generation of organ-specific mesenchyme has received much less attention. This is a major limitation in ongoing efforts to engineer complex human tissue. Here, we describe a protocol to differentiate hPSCs into different types of organ-specific mesoderm, leveraging signaling networks and molecular markers elucidated from single-cell transcriptomics of mouse foregut organogenesis. Building on established methods, hPSC-derived lateral plate mesoderm treated with either retinoic acid (RA) or RA together with a Hedgehog (HH) agonist generates posterior or anterior foregut splanchnic mesoderm, respectively, after 4-d cultures. These are directed into organ-specific mesenchyme lineages by the combinatorial activation or inhibition of WNT, BMP, RA or HH pathways from days 4 to 7 in cultures. By day 7, the cultures are enriched for different types of mesoderm with distinct molecular signatures: 60-90% pure liver septum transversum/mesothelium-like, 70-80% pure liver-like fibroblasts and populations of ~35% respiratory-like mesoderm, gastric-like mesoderm or esophageal-like mesoderm. This protocol can be performed by anyone with moderate experience differentiating hPSCs, provides a novel platform to study human mesoderm development and can be used to engineer more complex foregut tissue for disease modeling and regenerative medicine.


Assuntos
Proteínas Hedgehog , Células-Tronco Pluripotentes , Humanos , Camundongos , Animais , Proteínas Hedgehog/metabolismo , Mesoderma , Endoderma , Diferenciação Celular , Tretinoína/farmacologia , Pulmão
15.
Nature ; 435(7040): 354-9, 2005 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-15902259

RESUMO

The serially segmented (metameric) structures of vertebrates are based on somites that are periodically formed during embryogenesis. A 'clock and wavefront' model has been proposed to explain the underlying mechanism of somite formation, in which the periodicity is generated by oscillation of Notch components (the clock) in the posterior pre-somitic mesoderm (PSM). This temporal periodicity is then translated into the segmental units in the 'wavefront'. The wavefront is thought to exist in the anterior PSM and progress backwards at a constant rate; however, there has been no direct evidence as to whether the levels of Notch activity really oscillate and how such oscillation is translated into a segmental pattern in the anterior PSM. Here, we have visualized endogenous levels of Notch1 activity in mice, showing that it oscillates in the posterior PSM but is arrested in the anterior PSM. Somite boundaries formed at the interface between Notch1-activated and -repressed domains. Genetic and biochemical studies indicate that this interface is generated by suppression of Notch activity by mesoderm posterior 2 (Mesp2) through induction of the lunatic fringe gene (Lfng). We propose that the oscillation of Notch activity is arrested and translated in the wavefront by Mesp2.


Assuntos
Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Relógios Biológicos/fisiologia , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos/genética , Deleção de Genes , Glicosiltransferases/deficiência , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Camundongos , Modelos Biológicos , Periodicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Notch1 , Somitos/metabolismo , Fatores de Transcrição/genética
16.
Dev Cell ; 56(13): 1917-1929.e9, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34129836

RESUMO

During development, quiescent airway basal stem cells are derived from proliferative primordial progenitors through the cell-cycle slowdown. In contrast, basal cells contribute to adult tissue regeneration by shifting from slow cycling to proliferating and subsequently back to slow cycling. Although sustained proliferation results in tumorigenesis, the molecular mechanisms regulating these transitions remain unknown. Using temporal single-cell transcriptomics of developing murine airway progenitors and genetic validation experiments, we found that TGF-ß signaling decelerated cell cycle by inhibiting Id2 and contributed to slow-cycling basal cell specification during development. In adult tissue regeneration, reduced TGF-ß signaling restored Id2 expression and initiated regeneration. Id2 overexpression and Tgfbr2 knockout enhanced epithelial proliferation; however, persistent Id2 expression drove basal cell hyperplasia that resembled a precancerous state. Together, the TGF-ß-Id2 axis commonly regulates the proliferation transitions in basal cells during development and regeneration, and its fine-tuning is critical for normal regeneration while avoiding basal cell hyperplasia.


Assuntos
Proliferação de Células/genética , Proteína 2 Inibidora de Diferenciação/genética , Regeneração/genética , Fator de Crescimento Transformador beta/genética , Animais , Diferenciação Celular/genética , Células Epiteliais/citologia , Humanos , Pulmão/crescimento & desenvolvimento , Camundongos , Sistema Respiratório/crescimento & desenvolvimento , Células-Tronco/citologia
17.
Neurosci Res ; 170: 122-132, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33309869

RESUMO

During mammalian corticogenesis, Notch signaling is essential to maintain neural stem cells called radial glial cells (RGCs) and the cortical architecture. Because the conventional knockout of either Notch1 or Notch2 causes a neuroepithelial loss prior to neurogenesis, their functional relationship in RGCs remain elusive. Here, we investigated the impacts of single knockout of Notch1 and Notch2 genes, and their conditional double knockout (DKO) on mouse corticogenesis. We demonstrated that Notch1 single knockout affected RGC maintenance in early to mid-neurogenesis whereas Notch2 knockout caused no apparent defect. In contrast, Notch2 plays a role in the RGC maintenance as Notch1 does at the late stage. Notch1 and Notch2 DKO resulted in the complete loss of RGCs, suggesting their cooperative function. We found that Notch activity in RGCs depends on the Notch gene dosage irrespective of Notch1 or Notch2 at late neurogenic stage, and that Notch1 and Notch2 have a similar activity, most likely due to a drastic increase in Notch2 transcription. Our results revealed that Notch1 has an essential role in establishing the RGC pool during the early stage, whereas Notch1 and Notch2 subsequently exhibit a comparable function for RGC maintenance and neurogenesis in the late neurogenic period in the mouse telencephalon.


Assuntos
Células-Tronco Neurais , Receptor Notch1 , Animais , Células Ependimogliais , Camundongos , Neurogênese , Receptor Notch1/genética , Transdução de Sinais
18.
Commun Biol ; 4(1): 1204, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671097

RESUMO

Congenital malformations cause life-threatening diseases in pediatrics, yet the molecular mechanism of organogenesis is poorly understood. Here we show that Dyrk2-deficient mice display congenital malformations in multiple organs. Transcriptome analysis reveals molecular pathology of Dyrk2-deficient mice, particularly with respect to Foxf1 reduction. Mutant pups exhibit sudden death soon after birth due to respiratory failure. Detailed analyses of primordial lungs at the early developmental stage demonstrate that Dyrk2 deficiency leads to altered airway branching and insufficient alveolar development. Furthermore, the Foxf1 expression gradient in mutant lung mesenchyme is disrupted, reducing Foxf1 target genes, which are necessary for proper airway and alveolar development. In ex vivo lung culture system, we rescue the expression of Foxf1 and its target genes in Dyrk2-deficient lung by restoring Shh signaling activity. Taken together, we demonstrate that Dyrk2 is essential for embryogenesis and its disruption results in congenital malformation.


Assuntos
Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Expressão Gênica , Pneumopatias/genética , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Tirosina Quinases/deficiência , Animais , Fatores de Transcrição Forkhead/metabolismo , Pneumopatias/congênito , Camundongos , Quinases Dyrk
19.
Kobe J Med Sci ; 67(2): E61-E70, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34795157

RESUMO

Initially, endothelin (ET)-2 was described as an endothelium-derived vasoconstrictor. However, accumulating evidence suggests the involvement of ET-2 in non-cardiovascular physiology and disease pathophysiology. The deficiency of ET-2 in mice can be lethal, and such mice exhibit a distinct developmental abnormality in the lungs. Nonetheless, the definite role of ET-2 in the lungs remains unclear. The ET-2 isoform, ET-1, promotes pulmonary fibrosis in mice. Although endothelin receptor antagonists (ERAs) show improvements in bleomycin-induced pulmonary fibrosis in mouse models, clinical trials examining ERAs for pulmonary fibrosis treatment have been unsuccessful, even showing harmful effects in patients. We hypothesized that ET-2, which activates the same receptor as ET-1, plays a distinct role in pulmonary fibrosis. In this study, we showed that ET-2 is expressed in the lung epithelium, and ET-2 deletion in epithelial cells of mice results in the exacerbation of bleomycin-induced pulmonary fibrosis. ET-2 knockdown in lung epithelial cell lines resulted in increased apoptosis mediated via oxidative stress induction. In contrast to the effects of ET-1, which induced fibroblast activation, ET-2 hampered fibroblast activation in primary mouse lung fibroblast cells by inhibiting the TGF-ß-SMAD2/3 pathway. Our results demonstrated the divergent roles of ET-1 and ET-2 in pulmonary fibrosis pathophysiology and suggested that ET-2, expressed in epithelial cells, exerts protective effects against the development of pulmonary fibrosis in mice.


Assuntos
Bleomicina/toxicidade , Endotelina-2/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Animais , Bleomicina/administração & dosagem , Células Epiteliais , Epitélio/metabolismo , Epitélio/patologia , Pulmão/patologia , Camundongos , Fator de Crescimento Transformador beta/metabolismo
20.
Stem Cell Res Ther ; 12(1): 54, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436065

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is an incurable and debilitating chronic disease characterized by progressive airflow limitation associated with abnormal levels of tissue inflammation. Therefore, stem cell-based approaches to tackle the condition are currently a focus of regenerative therapies for COPD. Extracellular vesicles (EVs) released by all cell types are crucially involved in paracrine, extracellular communication. Recent advances in the field suggest that stem cell-derived EVs possess a therapeutic potential which is comparable to the cells of their origin. METHODS: In this study, we assessed the potential anti-inflammatory effects of human umbilical cord mesenchymal stem cell (hUC-MSC)-derived EVs in a rat model of COPD. EVs were isolated from hUC-MSCs and characterized by the transmission electron microscope, western blotting, and nanoparticle tracking analysis. As a model of COPD, male Sprague-Dawley rats were exposed to cigarette smoke for up to 12 weeks, followed by transplantation of hUC-MSCs or application of hUC-MSC-derived EVs. Lung tissue was subjected to histological analysis using haematoxylin and eosin staining, Alcian blue-periodic acid-Schiff (AB-PAS) staining, and immunofluorescence staining. Gene expression in the lung tissue was assessed using microarray analysis. Statistical analyses were performed using GraphPad Prism 7 version 7.0 (GraphPad Software, USA). Student's t test was used to compare between 2 groups. Comparison among more than 2 groups was done using one-way analysis of variance (ANOVA). Data presented as median ± standard deviation (SD). RESULTS: Both transplantation of hUC-MSCs and application of EVs resulted in a reduction of peribronchial and perivascular inflammation, alveolar septal thickening associated with mononuclear inflammation, and a decreased number of goblet cells. Moreover, hUC-MSCs and EVs ameliorated the loss of alveolar septa in the emphysematous lung of COPD rats and reduced the levels of NF-κB subunit p65 in the tissue. Subsequent microarray analysis revealed that both hUC-MSCs and EVs significantly regulate multiple pathways known to be associated with COPD. CONCLUSIONS: In conclusion, we show that hUC-MSC-derived EVs effectively ameliorate by COPD-induced inflammation. Thus, EVs could serve as a new cell-free-based therapy for the treatment of COPD.


Assuntos
Vesículas Extracelulares , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Inflamação/terapia , Masculino , Doença Pulmonar Obstrutiva Crônica/terapia , Ratos , Ratos Sprague-Dawley , Cordão Umbilical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA