Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(17): 176601, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37955499

RESUMO

Qubits built out of Majorana zero modes constitute the primary path toward topologically protected quantum computing. Simulating the braiding process of multiple Majorana zero modes corresponds to the quantum dynamics of a superconducting many-body system. It is crucial to study the Majorana dynamics both in the presence of all other quasiparticles and for reasonably large system sizes. We present a method to calculate arbitrary many-body wave functions as well as their expectation values, correlators, and overlaps from time evolved single-particle states of a superconductor, allowing for significantly larger system sizes. We calculate the fidelity, transition probabilities, and joint parities of Majorana pairs to track the quality of the braiding process. We show how the braiding success depends on the speed of the braid. Moreover, we demonstrate the topological CNOT two-qubit gate as an example of two-qubit entanglement. Our Letter opens the path to test and analyze the many theoretical implementations of Majorana qubits. Moreover, this method can be used to study the dynamics of any noninteracting superconductor.

2.
Phys Rev Lett ; 123(1): 017001, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31386405

RESUMO

Recent advances in the development of Josephson scanning tunneling spectroscopy (JSTS) have opened a new path for the exploration of unconventional superconductors. We demonstrate that the critical current I_{c}, measured via JSTS, images the spatial form of the superconducting order parameter in d_{x^{2}-y^{2}}-wave superconductors around defects and in the Fulde-Ferrell-Larkin-Ovchinnikov state. Moreover, we show that I_{c} probes the existence of phase-incoherent superconducting correlations in the pseudogap region of the cuprate superconductors, thus providing unprecedented insight into its elusive nature. These results provide the missing theoretical link between the experimentally measured I_{c} and the spatial structure of the superconducting order parameter.

3.
Rep Prog Phys ; 80(1): 014502, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27823990

RESUMO

Kondo systems ranging from the single Kondo impurity to heavy fermion materials present us with a plethora of unconventional properties whose theoretical understanding is still one of the major open problems in condensed matter physics. Over the last few years, groundbreaking scanning tunneling spectroscopy (STS) experiments have provided unprecedented new insight into the electronic structure of Kondo systems. Interpreting the results of these experiments-the differential conductance and the quasi-particle interference spectrum-however, has been complicated by the fact that electrons tunneling from the STS tip into the system can tunnel either into the heavy magnetic moment or the light conduction band states. In this article, we briefly review the theoretical progress made in understanding how quantum interference between these two tunneling paths affects the experimental STS results. We show how this theoretical insight has allowed us to interpret the results of STS experiments on a series of heavy fermion materials providing detailed knowledge of their complex electronic structure. It is this knowledge that is a conditio sine qua non for developing a deeper understanding of the fascinating properties exhibited by heavy fermion materials, ranging from unconventional superconductivity to non-Fermi-liquid behavior in the vicinity of quantum critical points.

4.
Proc Natl Acad Sci U S A ; 111(32): 11663-7, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25062692

RESUMO

To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high-temperature superconductivity. Magnetically mediated Cooper pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference imaging to reveal quantitatively the momentum space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands Ek(α,ß) with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5 then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by f-electron magnetism.

5.
Phys Rev Lett ; 117(22): 226601, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27925745

RESUMO

We generalize the concept of equivalent resistance to the entire range from coherent quantum to diffusive classical transport by introducing the notion of transport equivalent networks. We show that this novel concept presents us with a platform to simplify the structure of quantum networks while preserving their global and local transport properties, even in the presence of electron-phonon or electron-electron interactions. This allows us to describe the evolution of equivalent quantum networks to equivalent classical resistor networks with increasing interaction strength.

6.
Phys Rev Lett ; 110(8): 086802, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23473184

RESUMO

We propose a new method for atomic-scale imaging of spatial current patterns in nanoscopic quantum networks by using scanning tunneling microscopy (STM). By measuring the current flowing from the STM tip into one of the leads attached to the network as a function of tip position, one obtains an atomically resolved spatial image of "current riverbeds" whose spatial structure reflects the coherent flow of electrons out of equilibrium. We show that this method can be successfully applied in a variety of network topologies and is robust against dephasing effects.

7.
Nat Commun ; 14(1): 614, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739279

RESUMO

Magnet/superconductor hybrids (MSHs) hold the promise to host emergent topological superconducting phases. Both one-dimensional (1D) and two-dimensional (2D) magnetic systems in proximity to s-wave superconductors have shown evidence of gapped topological superconductivity with zero-energy end states and chiral edge modes. Recently, it was proposed that the bulk transition-metal dichalcogenide 4Hb-TaS2 is a gapless topological nodal-point superconductor (TNPSC). However, there has been no experimental realization of a TNPSC in a MSH system yet. Here we present the discovery of TNPSC in antiferromagnetic (AFM) monolayers on top of an s-wave superconductor. Our calculations show that the topological phase is driven by the AFM order, resulting in the emergence of a gapless time-reversal invariant topological superconducting state. Using low-temperature scanning tunneling microscopy we observe a low-energy edge mode, which separates the topological phase from the trivial one, at the boundaries of antiferromagnetic islands. As predicted by the calculations, we find that the relative spectral weight of the edge mode depends on the edge's atomic configuration. Our results establish the combination of antiferromagnetism and superconductivity as a novel route to design 2D topological quantum phases.

8.
Science ; 379(6638): 1214-1218, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36952423

RESUMO

A Kondo lattice is often electrically insulating at low temperatures. However, several recent experiments have detected signatures of bulk metallicity within this Kondo insulating phase. In this study, we visualized the real-space charge landscape within a Kondo lattice with atomic resolution using a scanning tunneling microscope. We discovered nanometer-scale puddles of metallic conduction electrons centered around uranium-site substitutions in the heavy-fermion compound uranium ruthenium silicide (URu2Si2) and around samarium-site defects in the topological Kondo insulator samarium hexaboride (SmB6). These defects disturbed the Kondo screening cloud, leaving behind a fingerprint of the metallic parent state. Our results suggest that the three-dimensional quantum oscillations measured in SmB6 arise from Kondo-lattice defects, although we cannot exclude other explanations. Our imaging technique could enable the development of atomic-scale charge sensors using heavy-fermion probes.

9.
Phys Rev Lett ; 107(6): 066401, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21902345

RESUMO

Defects provide important insight into the complex electronic and magnetic structure of heavy-fermion materials by inducing qualitatively different real-space perturbations in the electronic and magnetic correlations of the system. These perturbations possess direct experimental signatures in the local density of states, such as an impurity bound state, and the nonlocal spin susceptibility. Moreover, highly nonlinear quantum interference between defect-induced perturbations can drive the system through a first-order phase transition to a novel inhomogeneous ground state.

10.
Phys Rev Lett ; 104(18): 187202, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20482204

RESUMO

We present a large-N theory for the differential conductance, dI/dV, in Kondo systems measured via scanning tunneling spectroscopy. We demonstrate that quantum interference between tunneling processes into the conduction band and into the magnetic f-electron states is crucial in determining the experimental Fano line shape of dI/dV. This allows one to uniquely extract the Kondo coupling and the ratio of the tunneling amplitudes from the experimental dI/dV curve. Finally, we show that dI/dV directly reflects the strength of the antiferromagnetic interaction in Kondo lattice systems.

11.
Phys Rev Lett ; 105(3): 037003, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20867793

RESUMO

We study the emergence of multiband superconductivity with s- and d-wave symmetry on the background of a spin density wave (SDW). We show that the SDW coherence factors renormalize the momentum dependence of the superconducting (SC) gap, yielding a SC state with an unconventional s-wave symmetry. Interband Cooper pair scattering stabilizes superconductivity in both symmetries. With increasing SDW order, the s-wave state is more strongly suppressed than the d-wave state. Our results are universally applicable to two-dimensional systems with a commensurate SDW.

12.
Commun Phys ; 32020.
Artigo em Inglês | MEDLINE | ID: mdl-33655080

RESUMO

Spin-fluctuation-mediated unconventional superconductivity can emerge at the border of magnetism, featuring a superconducting order parameter that changes sign in momentum space. Detection of such a sign-change is experimentally challenging, since most probes are not phase-sensitive. The observation of a spin resonance mode (SRM) from inelastic neutron scattering is often seen as strong phase-sensitive evidence for a sign-changing superconducting order parameter, by assuming the SRM is a spin-excitonic bound state. Here we show that for the heavy fermion superconductor CeCoIn5, its SRM defies expectations for a spin-excitonic bound state, and is not a manifestation of sign-changing superconductivity. Instead, the SRM in CeCoIn5 likely arises from a reduction of damping to a magnon-like mode in the superconducting state, due to its proximity to magnetic quantum criticality. Our findings emphasize the need for more stringent tests of whether SRMs are spin-excitonic, when using their presence to evidence sign-changing superconductivity.

13.
Science ; 367(6473): 104-108, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31896719

RESUMO

The possible realization of Majorana fermions as quasiparticle excitations in condensed-matter physics has created much excitement. Most studies have focused on Majorana bound states; however, propagating Majorana states with linear dispersion have also been predicted. Here, we report scanning tunneling spectroscopic measurements of crystalline domain walls (DWs) in FeSe0.45Te0.55 We located DWs across which the lattice structure shifts by half a unit cell. These DWs have a finite, flat density of states inside the superconducting gap, which is a hallmark of linearly dispersing modes in one dimension. This signature is absent in DWs in the related superconductor, FeSe, which is not in the topological phase. Our combined data are consistent with the observation of dispersing Majorana states at a π-phase shift DW in a proximitized topological material.

14.
Sci Adv ; 5(7): eaav6600, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31360762

RESUMO

Topological superconductors are predicted to harbor exotic boundary states-Majorana zero-energy modes-whose non-Abelian braiding statistics present a new paradigm for the realization of topological quantum computing. Using low-temperature scanning tunneling spectroscopy, here, we report on the direct real-space visualization of chiral Majorana edge states in a monolayer topological superconductor, a prototypical magnet-superconductor hybrid system composed of nanoscale Fe islands of monoatomic height on a Re(0001)-O(2 × 1) surface. In particular, we demonstrate that interface engineering by an atomically thin oxide layer is crucial for driving the hybrid system into a topologically nontrivial state as confirmed by theoretical calculations of the topological invariant, the Chern number.

15.
Nat Commun ; 10(1): 5588, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811123

RESUMO

Atomic manipulation techniques have provided a bottom-up approach to investigating the unconventional properties and complex phases of strongly correlated electron materials. By engineering artificial systems containing tens to thousands of atoms with tailored electronic or magnetic properties, it has become possible to explore how quantum many-body effects emerge as the size of a system is increased from the nanoscale to the mesoscale. Here we investigate both theoretically and experimentally the quantum engineering of nanoscale Kondo lattices - Kondo droplets - exemplifying nanoscopic replicas of heavy-fermion materials. We demonstrate that by changing a droplet's real-space geometry, we can not only create coherently coupled Kondo droplets whose properties asymptotically approach those of a quantum-coherent Kondo lattice, but also markedly increase or decrease the droplet's Kondo temperature. Furthermore we report on the discovery of a new quantum phenomenon - the Kondo echo - a signature of droplets containing Kondo holes functioning as direct probes of spatially extended, quantum-coherent Kondo cloud correlations.

16.
Phys Rev Lett ; 99(4): 047005, 2007 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17678394

RESUMO

We study the emergence of a magnetic resonance in the superconducting state of the electron-doped cuprate superconductors. We show that the recently observed resonance peak in the electron-doped superconductor Pr0.88LaCe0.12CuO4-delta is consistent with an overdamped spin exciton located near the particle-hole continuum. We present predictions for the magnetic-field dependence of the resonance mode as well as its temperature evolution in those parts of the phase diagram where dx2-y2-wave superconductivity may coexist with an antiferromagnetic spin-density wave.

17.
Nat Commun ; 7: 12774, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27677397

RESUMO

The neutron spin resonance is a collective magnetic excitation that appears in the unconventional copper oxide, iron pnictide and heavy fermion superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s±)-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce1-xYbxCoIn5 with x=0, 0.05 and 0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with a random phase approximation calculation using the electronic structure and the momentum dependence of the -wave superconducting gap determined from scanning tunnelling microscopy (STM) for CeCoIn5, we conclude that the robust upward-dispersing resonance mode in Ce1-xYbxCoIn5 is inconsistent with the downward dispersion predicted within the spin-exciton scenario.

18.
J Phys Chem B ; 118(10): 2693-702, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24498866

RESUMO

Long-lived coherences have been observed in photosynthetic complexes after laser excitation, inspiring new theories regarding the extreme quantum efficiency of photosynthetic energy transfer. Whether coherent (ballistic) transport occurs in nature and whether it improves photosynthetic efficiency remain topics of debate. Here, we use a nonequilibrium Green's function analysis to model exciton transport after excitation from an incoherent source (as opposed to coherent laser excitation). We find that even with an incoherent source, the rate of environmental dephasing strongly affects exciton transport efficiency, suggesting that the relationship between dephasing and efficiency is not an artifact of coherent excitation. The Green's function analysis provides a clear view of both the pattern of excitonic fluxes among chromophores and the multidirectionality of energy transfer that is a feature of coherent transport. We see that even in the presence of an incoherent source, transport occurs by qualitatively different mechanisms as dephasing increases. Our approach can be generalized to complex synthetic systems and may provide a new tool for optimizing synthetic light harvesting materials.


Assuntos
Proteínas de Bactérias/química , Complexos de Proteínas Captadores de Luz/química , Modelos Químicos , Fotossíntese , Algoritmos , Chlorobi , Processos Fotoquímicos , Estrutura Secundária de Proteína
19.
Science ; 343(6169): 382-3, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24458633
20.
Phys Rev Lett ; 97(23): 236602, 2006 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-17280221

RESUMO

We study the Kondo screening of a single magnetic impurity inside a nonmagnetic quantum corral located on the surface of a metallic host system. We show that the spatial structure of the corral's eigenmodes leads to a spatially dependent Kondo effect whose signatures are spatial variations of the Kondo temperature T K. Moreover, we predict that the Kondo screening is accompanied by the formation of multiple Kondo resonances with characteristic spatial patterns. Our results open new possibilities to manipulate and explore the Kondo effect by using quantum corrals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA