Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(13): e23797, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38963344

RESUMO

The role of N-glycosylation in the myogenic process remains poorly understood. Here, we evaluated the impact of N-glycosylation inhibition by Tunicamycin (TUN) or by phosphomannomutase 2 (PMM2) gene knockdown, which encodes an enzyme essential for catalyzing an early step of the N-glycosylation pathway, on C2C12 myoblast differentiation. The effect of chronic treatment with TUN on tibialis anterior (TA) and extensor digitorum longus (EDL) muscles of WT and MLC/mIgf-1 transgenic mice, which overexpress muscle Igf-1Ea mRNA isoform, was also investigated. TUN-treated and PMM2 knockdown C2C12 cells showed reduced ConA, PHA-L, and AAL lectin binding and increased ER-stress-related gene expression (Chop and Hspa5 mRNAs and s/uXbp1 ratio) compared to controls. Myogenic markers (MyoD, myogenin, and Mrf4 mRNAs and MF20 protein) and myotube formation were reduced in both TUN-treated and PMM2 knockdown C2C12 cells. Body and TA weight of WT and MLC/mIgf-1 mice were not modified by TUN treatment, while lectin binding slightly decreased in the TA muscle of WT (ConA and AAL) and MLC/mIgf-1 (ConA) mice. The ER-stress-related gene expression did not change in the TA muscle of WT and MLC/mIgf-1 mice after TUN treatment. TUN treatment decreased myogenin mRNA and increased atrogen-1 mRNA, particularly in the TA muscle of WT mice. Finally, the IGF-1 production and IGF1R signaling pathways activation were reduced due to N-glycosylation inhibition in TA and EDL muscles. Decreased IGF1R expression was found in TUN-treated C2C12 myoblasts which was associated with lower IGF-1-induced IGF1R, AKT, and ERK1/2 phosphorylation compared to CTR cells. Chronic TUN-challenge models can help to elucidate the molecular mechanisms through which diseases associated with aberrant N-glycosylation, such as Congenital Disorders of Glycosylation (CDG), affect muscle and other tissue functions.


Assuntos
Diferenciação Celular , Chaperona BiP do Retículo Endoplasmático , Músculo Esquelético , Mioblastos , Receptor IGF Tipo 1 , Transdução de Sinais , Tunicamicina , Animais , Camundongos , Glicosilação , Mioblastos/metabolismo , Chaperona BiP do Retículo Endoplasmático/metabolismo , Tunicamicina/farmacologia , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Músculo Esquelético/metabolismo , Desenvolvimento Muscular/fisiologia , Linhagem Celular , Camundongos Transgênicos , Estresse do Retículo Endoplasmático , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/genética
2.
Curr Issues Mol Biol ; 46(6): 6112-6120, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38921036

RESUMO

Wilson's disease (WD) is a biallelic disease-causing variant in the ATP7B gene on chromosome 13q14.3 that results in copper accumulation in many organs, particularly the liver and brain. The phenotypic spectrum is wide and symptoms at onset can be heterogeneous. We describe two Sicilian siblings, a young man and his elder sister, both compound heterozygous for the variants c.1286-2A>G and c.2668G>A (p.Val890Met) in the ATB7B gene. The male patient presented with liver cirrhosis, which quickly progressed to end-stage liver disease (Child-Pugh score = C10), while his sister had moderate steatotic liver disease (SLD). Our findings highlight that SLD may not always be related to obesity in overweight patients, especially when there are other potential risk factors such as a family history of chronic liver disease, or the persistence of high transaminase despite the adoption of adequate dietary and pharmacological intervention. Screening for conditions such as WD could identify patients at risk of developing SLD and avoid delays in diagnosis. Phenotypic variability in WD is considerable; therefore, further studies are needed to identify which WD patients have a greater risk of developing SLD and determine factors that can predict the severity of the disease.

3.
Chembiochem ; 25(1): e202300730, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37877519

RESUMO

Engineering bioactive iminosugars with pH-responsive groups is an emerging approach to develop pharmacological chaperones (PCs) able to improve lysosomal trafficking and enzymatic activity rescue of mutated enzymes. The use of inexpensive l-malic acid allowed introduction of orthoester units into the lipophilic chain of an enantiomerically pure iminosugar affording only two diastereoisomers contrary to previous related studies. The iminosugar was prepared stereoselectively from the chiral pool (d-mannose) and chosen as the lead bioactive compound, to develop novel candidates for restoring the lysosomal enzyme glucocerebrosidase (GCase) activity. The stability of orthoester-appended iminosugars was studied by 1 H NMR spectroscopy both in neutral and acidic environments, and the loss of inhibitory activity with time in acid medium was demonstrated on cell lysates. Moreover, the ability to rescue GCase activity in the lysosomes as the result of a chaperoning effect was explored. A remarkable pharmacological chaperone activity was measured in fibroblasts hosting the homozygous L444P/L444P mutation, a cell line resistant to most PCs, besides the more commonly responding N370S mutation.


Assuntos
Doença de Gaucher , Glucosilceramidase , Humanos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Piperidinas/farmacologia , Piperidinas/metabolismo , Mutação , Fibroblastos , Concentração de Íons de Hidrogênio
5.
Chem Biodivers ; 21(8): e202401104, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38847390

RESUMO

A remarkable enhancer of human glucocerebrosidase enzyme (GCase) was identified among a set of dihydroazulene-tagged iminosugars. An unprecedented 3.9-fold increase in GCase activity was detected on fibroblasts bearing the homozygous L444P mutation, which is frequently associated with neuronopathic Gaucher forms, and which commonly results refractory to chaperone-induced refolding.


Assuntos
Glucosilceramidase , Mutação , Humanos , Glucosilceramidase/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/antagonistas & inibidores , Imino Açúcares/química , Imino Açúcares/farmacologia , Imino Açúcares/síntese química , Imino Açúcares/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Doença de Gaucher/genética , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/metabolismo , Estrutura Molecular
6.
Molecules ; 29(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257371

RESUMO

Gaucher disease (GD) is a rare genetic metabolic disorder characterized by a dysfunction of the lysosomal glycoside hydrolase glucocerebrosidase (GCase) due to mutations in the gene GBA1, leading to the cellular accumulation of glucosylceramide (GlcCer). While most of the current research focuses on the primary accumulated material, lesser attention has been paid to secondary storage materials and their reciprocal intertwining. By using a novel approach based on flow cytometry and fluorescent labelling, we monitored changes in storage materials directly in fibroblasts derived from GD patients carrying N370S/RecNcil and homozygous L444P or R131C mutations with respect to wild type. In L444P and R131C fibroblasts, we detected not only the primary accumulation of GlcCer accumulation but also a considerable secondary increase in GM1 storage, comparable with the one observed in infantile patients affected by GM1 gangliosidosis. In addition, the ability of a trivalent trihydroxypiperidine iminosugar compound (CV82), which previously showed good pharmacological chaperone activity on GCase enzyme, to reduce the levels of storage materials in L444P and R131C fibroblasts was tested. Interestingly, treatment with different concentrations of CV82 led to a significant reduction in GM1 accumulation only in L444P fibroblasts, without significantly affecting GlcCer levels. The compound CV82 was selective against the GCase enzyme with respect to the ß-Galactosidase enzyme, which was responsible for the catabolism of GM1 ganglioside. The reduction in GM1-ganglioside level cannot be therefore ascribed to a direct action of CV82 on ß-Galactosidase enzyme, suggesting that GM1 decrease is rather related to other unknown mechanisms that follow the direct action of CV82 on GCase. In conclusion, this work indicates that the tracking of secondary storages can represent a key step for a better understanding of the pathways involved in the severity of GD, also underlying the importance of developing drugs able to reduce both primary and secondary storage-material accumulations in GD.


Assuntos
Gangliosídeo G(M1) , Doença de Gaucher , Humanos , Fibroblastos , beta-Galactosidase/genética , Corantes , Citometria de Fluxo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Glucosilceramidas
7.
Chemistry ; 29(19): e202203841, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36598148

RESUMO

Piperidine-based photoswitchable derivatives have been developed as putative pharmacological chaperones for glucocerebrosidase (GCase), the defective enzyme in Gaucher disease (GD). The structure-activity study revealed that both the iminosugar and the light-sensitive azobenzene are essential features to exert inhibitory activity towards human GCase and a system with the correct inhibition trend (IC50 of the light-activated form lower than IC50 of the dark form) was identified. Kinetic analyses showed that all compounds are non-competitive inhibitors (mixed or pure) of GCase and the enzyme allosteric site involved in the interaction was identified by means of MD simulations. A moderate activity enhancement of mutant GCase assessed in GD patients' fibroblasts (ex vivo experiments) carrying the most common mutation was recorded. This promising observation paves the way for further studies to improve the benefit of the light-to-dark thermal conversion for chaperoning activity.


Assuntos
Doença de Gaucher , Glucosilceramidase , Humanos , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Dobramento de Proteína , Fibroblastos/metabolismo , Mutação , Inibidores Enzimáticos/farmacologia
8.
Org Biomol Chem ; 21(47): 9362-9371, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37975191

RESUMO

N-Acetylgalactosamine-6-sulfatase (GALNS) is an enzyme whose deficiency is related to the lysosomal storage disease Morquio A. For the development of effective therapeutic approaches against this disease, the design of suitable enzyme enhancers (i.e. pharmacological chaperones) is fundamental. The natural substrates of GALNS are the glycosaminoglycans keratan sulfate and chondroitin 6-sulfate, which mainly display repeating units of sulfated carbohydrates. With a biomimetic approach, gold nanoparticles (AuNPs) decorated with simple monosaccharides, sulfated ligands (homoligand AuNPs), or both monosaccharides and sulfated ligands (mixed-ligand AuNPs) were designed here as multivalent inhibitors of GALNS. Among the homoligand AuNPs, the most effective inhibitors of GALNS activity are the ß-D-galactoside-coated AuNPs. In the case of mixed-ligand AuNPs, ß-D-galactosides/sulfated ligands do not show better inhibition than the ß-D-galactoside-coated AuNPs. However, a synergistic effect is observed for α-D-mannosides in a mixed-ligand coating with sulfated ligands that reduced IC50 by one order of magnitude with respect to the homoligand α-D-mannoside-coated AuNPs. SAXS experiments corroborated the association of GALNS with ß-D-galactoside AuNPs. These AuNPs are able to restore the enzyme activity by almost 2-fold after thermal denaturation, indicating a potential chaperoning activity towards GALNS. This information could be exploited for future development of nanomedicines for Morquio A. The recent implications of GALNS in cancer and neuropathic pain make these kinds of multivalent bionanomaterials of great interest towards multiple therapies.


Assuntos
Condroitina Sulfatases , Nanopartículas Metálicas , Ouro , Acetilgalactosamina , Monossacarídeos , Ligantes , Sulfatos , Espalhamento a Baixo Ângulo , Difração de Raios X , Lisossomos
9.
Cell Mol Life Sci ; 79(3): 150, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35211808

RESUMO

The insulin-like growth factor-1 (IGF-1) signaling pathway is crucial for the regulation of growth and development. The correct processing of the IGF-1Ea prohormone (proIGF-1Ea) and the IGF-1 receptor (IGF-1R) peptide precursor requires proper N-glycosylation. Deficiencies of N-linked glycosylation lead to a clinically heterogeneous group of inherited diseases called Congenital Disorders of Glycosylation (CDG). The impact of N-glycosylation defects on IGF-1/IGF-1R signaling components is largely unknown. In this study, using dermal fibroblasts from patients with different CDG [PMM2-CDG (n = 7); ALG3-CDG (n = 2); ALG8-CDG (n = 1); GMPPB-CDG (n = 1)], we analyzed the glycosylation pattern of the proIGF-1Ea, IGF-1 secretion efficiency and IGF-1R signaling activity. ALG3-CDG, ALG8-CDG, GMPPB-CDG and some PMM2-CDG fibroblasts showed hypoglycosylation of the proIGF-1Ea and lower IGF-1 secretion when compared with control (CTR). Lower IGF-1 serum concentration was observed in ALG3-CDG, ALG8-CDG and in some patients with PMM2-CDG, supporting our in vitro data. Furthermore, reduced IGF-1R expression level was observed in ALG3-CDG, ALG8-CDG and in some PMM2-CDG fibroblasts. IGF-1-induced IGF-1R activation was lower in most PMM2-CDG fibroblasts and was associated with decreased ERK1/2 phosphorylation as compared to CTR. In general, CDG fibroblasts showed a slight upregulation of Endoplasmic Reticulum (ER) stress genes compared with CTR, uncovering mild ER stress in CDG cells. ER-stress-related gene expression negatively correlated with fibroblasts IGF-1 secretion. This study provides new evidence of a direct link between N-glycosylation defects found in CDG and the impairment of IGF-1/IGF-1R signaling components. Further studies are warranted to determine the clinical consequences of reduced systemic IGF-1 availability and local activity in patients with CDG.


Assuntos
Defeitos Congênitos da Glicosilação/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Biomarcadores/metabolismo , Estresse do Retículo Endoplasmático , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Lectinas/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Chembiochem ; 23(11): e202200077, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322924

RESUMO

The synthesis of five new multivalent derivatives of a trihydroxypiperidine iminosugar was accomplished through copper catalyzed alkyne-azide cycloaddition (CuAAC) reaction of an azido ending piperidine and several propargylated scaffolds. The resulting multivalent architectures were assayed as inhibitors of lysosomal GCase, the defective enzyme in Gaucher disease. The multivalent compounds resulted in much more potent inhibitors than a parent monovalent reference compound, thus showing a good multivalent effect. Biological investigation of these compounds as pharmacological chaperones revealed that the trivalent derivative (12) gives a 2-fold recovery of the GCase activity on Gaucher patient fibroblasts bearing the L444P/L444P mutations responsible for neuropathies. Additionally, a thermal denaturation experiment showed its ability to impart stability to the recombinant enzyme used in therapy.


Assuntos
Doença de Gaucher , Glucosilceramidase , Inibidores Enzimáticos/farmacologia , Fibroblastos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Glucosilceramidase/genética , Glucosilceramidase/uso terapêutico , Humanos , Mutação
11.
Org Biomol Chem ; 20(8): 1637-1641, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107482

RESUMO

Light-switchable inhibitors of the enzyme ß-glucocerebrosidase (GCase) have been developed by anchoring a specific azasugar to a dihydroazulene or an azobenzene responsive moiety. Their inhibitory effect towards human GCase, before and after irradiation are reported, and the effect on thermal denaturation of recombinant GCase and cytotoxicity were studied on selected candidates.


Assuntos
Compostos Azo/farmacologia , Azulenos/farmacologia , Inibidores Enzimáticos/farmacologia , Glucosilceramidase/antagonistas & inibidores , Compostos Azo/síntese química , Compostos Azo/química , Azulenos/síntese química , Azulenos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glucosilceramidase/metabolismo , Humanos , Luz , Estrutura Molecular , Processos Fotoquímicos
12.
Pediatr Transplant ; 26(6): e14318, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35633129

RESUMO

BACKGROUND: Cerebrotendinous xanthomatosis (CTX) is a disorder of bile acid (BA) metabolism due to biallelic mutations in CYP27A1. The deposition of cholesterol and cholestanol in multiple tissues results, manifesting as neurologic disease in adults or older children. Neonatal cholestasis (NC) as a presentation of CTX is rare; it may self-resolve or persist, evolving to require liver transplantation (LT). METHODS: We present in the context of similar reports an instance of CTX manifest as NC and requiring LT. RESULTS: A girl aged 4mo was evaluated for NC with normal serum gamma-glutamyl transpeptidase activity. An extensive diagnostic work-up, including liver biopsy, identified no etiology. Rapid progression to end-stage liver disease required LT aged 5mo. The explanted liver showed hepatocyte loss and micronodular cirrhosis. Bile salt export pump (BSEP), encoded by ABCB11, was not demonstrable immunohistochemically. Both severe ABCB11 disease and NR1H4 disease-NR1H4 encodes farsenoid-X receptor, necessary for ABCB11 transcription-were considered. However, selected liver disorder panel sequencing and mass-spectrometry urinary BA profiling identified CTX, with homozygosity for the predictedly pathogenic CYP27A1 variant c.646G > C p.(Ala216Pro). Variation in other genes associated with intrahepatic cholestasis was not detected. Immunohistochemical study of the liver-biopsy specimen found marked deficiency of CYP27A1 expression; BSEP expression was unremarkable. Aged 2y, the girl is free from neurologic disease. CONCLUSIONS: Bile acid synthesis disorders should be routinely included in the NC/"neonatal hepatitis" work-up. The mutually supportive triple approach of BA profiling, immunohistochemical study, and genetic analysis may optimally address diagnosis in CTX, a treatable disease with widely varying presentation.


Assuntos
Colestase , Falência Hepática , Transplante de Fígado , Xantomatose Cerebrotendinosa , Adolescente , Ácidos e Sais Biliares , Criança , Colestase/diagnóstico , Colestase/etiologia , Colestase/cirurgia , Feminino , Humanos , Lactente , Recém-Nascido , Falência Hepática/complicações , Xantomatose Cerebrotendinosa/complicações , Xantomatose Cerebrotendinosa/diagnóstico , Xantomatose Cerebrotendinosa/genética
13.
Int J Mol Sci ; 23(8)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35457240

RESUMO

3-Methylglutaconic aciduria type I (MGCA1) is an inborn error of the leucine degradation pathway caused by pathogenic variants in the AUH gene, which encodes 3-methylglutaconyl-coenzyme A hydratase (MGH). To date, MGCA1 has been diagnosed in 19 subjects and has been associated with a variable clinical picture, ranging from no symptoms to severe encephalopathy with basal ganglia involvement. We report the case of a 31-month-old female child referred to our center after the detection of increased 3-hydroxyisovalerylcarnitine levels at newborn screening, which were associated with increased urinary excretion of 3-methylglutaconic acid, 3-hydroxyisovaleric acid, and 3-methylglutaric acid. A next-generation sequencing (NGS) panel for 3-methylglutaconic aciduria failed to establish a definitive diagnosis. To further investigate the strong biochemical indication, we measured MGH activity, which was markedly decreased. Finally, single nucleotide polymorphism array analysis disclosed the presence of two microdeletions in compound heterozygosity encompassing the AUH gene, which confirmed the diagnosis. The patient was then supplemented with levocarnitine and protein intake was slowly decreased. At the last examination, the patient showed mild clumsiness and an expressive language disorder. This case exemplifies the importance of the biochemical phenotype in the differential diagnosis of metabolic diseases and the importance of collaboration between clinicians, biochemists, and geneticists for an accurate diagnosis.


Assuntos
Erros Inatos do Metabolismo , Feminino , Humanos , Recém-Nascido , Erros Inatos do Metabolismo/genética , Triagem Neonatal , Fenótipo
14.
Molecules ; 27(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807262

RESUMO

GM1 gangliosidosis is a rare lysosomal disease caused by the deficiency of the enzyme ß-galactosidase (ß-Gal; GLB1; E.C. 3.2.1.23), responsible for the hydrolysis of terminal ß-galactosyl residues from GM1 ganglioside, glycoproteins, and glycosaminoglycans, such as keratan-sulfate. With the aim of identifying new pharmacological chaperones for GM1 gangliosidosis, the synthesis of five new trihydroxypiperidine iminosugars is reported in this work. The target compounds feature a pentyl alkyl chain in different positions of the piperidine ring and different absolute configurations of the alkyl chain at C-2 and the hydroxy group at C-3. The organometallic addition of a Grignard reagent onto a carbohydrate-derived nitrone in the presence or absence of a suitable Lewis Acid was exploited, providing structural diversity at C-2, followed by the ring-closure reductive amination step. An oxidation-reduction process allowed access to a different configuration at C-3. The N-pentyl trihydroxypiperidine iminosugar was also synthesized for the purpose of comparison. The biological evaluation of the newly synthesized compounds was performed on leucocyte extracts from healthy donors and identified two suitable ß-Gal inhibitors, namely compounds 10 and 12. Among these, compound 12 showed chaperoning properties since it enhanced ß-Gal activity by 40% when tested on GM1 patients bearing the p.Ile51Asn/p.Arg201His mutations.


Assuntos
Gangliosidose GM1 , Gangliosidose GM1/tratamento farmacológico , Gangliosidose GM1/genética , Humanos , Lisossomos , Chaperonas Moleculares/genética , Mutação , beta-Galactosidase/química
15.
Hum Mutat ; 42(11): 1384-1398, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34387910

RESUMO

Mucopolysaccharidosis IVA (MPS IVA, Morquio A syndrome) is a rare autosomal recessive lysosomal storage disorder caused by mutations in the N-acetylgalactosamine-6-sulfatase (GALNS) gene. We collected, analyzed, and uniformly summarized all published GALNS gene variants, thus updating the previous mutation review (published in 2014). In addition, new variants were communicated by seven reference laboratories in Europe, the Middle East, Latin America, Asia, and the United States. All data were analyzed to determine common alleles, geographic distribution, level of homozygosity, and genotype-phenotype correlation. Moreover, variants were classified according to their pathogenicity as suggested by ACMG. Including those previously published, we assembled 446 unique variants, among which 68 were novel, from 1190 subjects (including newborn screening positive subjects). Variants' distribution was missense (65.0%), followed by nonsense (8.1%), splicing (7.2%), small frameshift deletions(del)/insertions(ins) (7.0%), intronic (4.0%), and large del/ins and complex rearrangements (3.8%). Half (50.4%) of the subjects were homozygous, 37.1% were compound heterozygous, and 10.7% had only one variant detected. The novel variants underwent in silico analysis to evaluate their pathogenicity. All variants were submitted to ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) to make them publicly available. Mutation updates are essential for the correct molecular diagnoses, genetic counseling, prenatal and preimplantation diagnosis, and disease management.


Assuntos
Condroitina Sulfatases/genética , Mucopolissacaridose IV/genética , Mutação , Estudos de Associação Genética , Humanos
16.
Mol Genet Metab ; 133(3): 297-306, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34119419

RESUMO

Gangliosidoses are inherited lysosomal storage disorders caused by reduced or absent activity of either a lysosomal enzyme involved in ganglioside catabolism, or an activator protein required for the proper activity of a ganglioside hydrolase, which results in the intra-lysosomal accumulation of undegraded metabolites. We hereby describe morphological, ultrastructural, biochemical and genetic features of GM2 gangliosidosis in three captive bred wild boar littermates. The piglets were kept in a partially-free range farm and presented progressive neurological signs, starting at 6 months of age. Animals were euthanized at approximately one year of age due to their poor conditions. Neuropathogens were excluded as a possible cause of the signs. Gross examination showed a reduction of cerebral and cerebellar consistency. Central (CNS) and peripheral (PNS) nervous system neurons were enlarged and foamy, with severe and diffuse cytoplasmic vacuolization. Transmission electron microscopy (TEM) of CNS neurons demonstrated numerous lysosomes, filled by parallel or concentric layers of membranous electron-dense material, defined as membranous cytoplasmic bodies (MCB). Biochemical composition of gangliosides analysis from CNS revealed accumulation of GM2 ganglioside; furthermore, Hex A enzyme activity was less than 1% compared to control animals. These data confirmed the diagnosis of GM2 gangliosidosis. Genetic analysis identified, at a homozygous level, the presence of a missense nucleotide variant c.1495C > T (p Arg499Cys) in the hexosaminidase subunit alpha gene (HEXA), located within the GH20 hexosaminidase superfamily domain of the encoded protein. This specific HEXA variant is known to be pathogenic and associated with Tay-Sachs disease in humans, but has never been identified in other animal species. This is the first report of a HEXA gene associated Tay-Sachs disease in wild boars and provides a comprehensive description of a novel spontaneous animal model for this lysosomal storage disease.


Assuntos
Variação Genética , Hexosaminidase A/genética , Mutação de Sentido Incorreto , Sus scrofa/genética , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/fisiopatologia , Animais , Cerebelo/patologia , Modelos Animais de Doenças , Feminino , Gangliosidoses GM2/metabolismo , Hexosaminidase A/metabolismo , Masculino , Doença de Tay-Sachs/patologia , Sequenciamento Completo do Genoma
17.
Mol Genet Metab ; 132(3): 180-188, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33558080

RESUMO

Morquio B disease is an attenuated phenotype within the spectrum of beta galactosidase (GLB1) deficiencies. It is characterised by dysostosis multiplex, ligament laxity, mildly coarse facies and heart valve defects due to keratan sulphate accumulation, predominantly in the cartilage. Morquio B patients have normal neurological development, setting them apart from those with the more severe GM1 gangliosidosis. Morquio B disease, with an incidence of 1:250.000 to 1:1.000.000 live births, is very rare. Here we report the clinical-biochemical data of nine patients. High amounts of keratan sulfate were detected using LC-MS/MS in the patients' urinary samples, while electrophoresis, the standard procedure of qualitative glycosaminoglycans analysis, failed to identify this metabolite in any of the patients' samples. We performed molecular analyses at gene, gene expression and protein expression levels, for both isoforms of the GLB1 gene, lysosomal GLB1, and the cell-surface expressed Elastin Binding Protein. We characterised three novel GLB1 mutations [c.75 + 2 T > G, c.575A > G (p.Tyr192Cys) and c.2030 T > G (p.Val677Gly)] identified in three heterozygous patients. We also set up a copy number variation assay by quantitative PCR to evaluate the presence of deletions/ insertions in the GLB1 gene. We propose a diagnostic plan, setting out the specific clinical- biochemical and molecular features of Morquio B, in order to avoid misdiagnoses and improve patients' management.


Assuntos
Gangliosidose GM1/diagnóstico , Glicosaminoglicanos/genética , Mucopolissacaridose IV/diagnóstico , beta-Galactosidase/genética , Criança , Pré-Escolar , Feminino , Gangliosidose GM1/genética , Gangliosidose GM1/fisiopatologia , Regulação da Expressão Gênica/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Lisossomos/genética , Masculino , Mucopolissacaridose IV/genética , Mucopolissacaridose IV/fisiopatologia , Mutação de Sentido Incorreto/genética , Receptores de Superfície Celular/genética
18.
Cerebellum ; 20(4): 596-605, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33619652

RESUMO

We aimed to identify clinical, molecular and radiological correlates of activities of daily living (ADL) in patients with cerebellar atrophy caused by PMM2 mutations (PMM2-CDG), the most frequent congenital disorder of glycosylation. Twenty-six PMM2-CDG patients (12 males; mean age 13 ± 11.1 years) underwent a standardized assessment to measure ADL, ataxia (brief ataxia rating scale, BARS) and phenotype severity (Nijmegen CDG rating scale, NCRS). MRI biometry of the cerebellum and the brainstem were performed in 23 patients (11 males; aged 5 months-18 years) and 19 control subjects with equal gender and age distributions. The average total ADL score was 15.3 ± 8.5 (range 3-32 out of 36 indicating severe functional disability), representing variable functional outcome in PMM2-CDG patients. Total ADL scores were significantly correlated with NCRS (r2 = 0.55, p < 0.001) and BARS scores (r2 = 0.764; p < 0.001). Severe intellectual disability, peripheral neuropathy, and severe PMM2 variants were all significantly associated with worse functional outcome. Higher ADL scores were significantly associated with decreased diameters of cerebellar vermis (r2 = 0.347; p = 0.004), hemispheres (r2 = 0.436; p = 0.005), and brainstem, particularly the mid-pons (r2 = 0.64; p < 0.001) representing the major radiological predictor of functional disability score in multivariate regression analysis. We show that cerebellar syndrome severity, cognitive level, peripheral neuropathy, and genotype correlate with ADL used to quantify disease-related deficits in PMM2-CDG. Brainstem involvement should be regarded among functional outcome predictors in patients with cerebellar atrophy caused by PMM2-CDG.


Assuntos
Atividades Cotidianas , Doenças Cerebelares , Mutação , Fosfotransferases (Fosfomutases) , Atrofia , Defeitos Congênitos da Glicosilação , Humanos , Masculino , Fosfotransferases (Fosfomutases)/deficiência , Fosfotransferases (Fosfomutases)/genética
19.
Am J Med Genet A ; 185(4): 1187-1194, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33394555

RESUMO

Congenital disorders of glycosylation (CDG) are an expanding group of metabolic disorders that result from abnormal protein glycosylation. A special subgroup of CDG type II comprises defects in the Conserved Oligomeric Golgi Complex (COG). In order to further delineate the genotypic and phenotypic spectrum of COG complex defect, we describe a novel variant of COG6 gene found in homozygosity in a Moroccan patient with severe presentation of COG6-CDG (OMIM #614576). We compared the phenotype of our patient with other previously reported COG6-CDG cases. Common features in COG6-CDG are facial dysmorphism, growth retardation, microcephaly, developmental disability, liver or gastrointestinal disease, recurrent infections, hypohidrosis/hyperthermia. In addition to these phenotypic features, our patient exhibited a disorder of sexual differentiation, which has rarely been reported in COG6-CDG. We hypothesize that the severe COG6 gene mutation interferes with glycosylation of a disintegrin and metalloprotease family members, inhibiting the correct gonadal distal tip cells migration, fundamental for the genitalia morphogenesis. This report broadens the genetic and phenotypic spectrum of COG6-CDG and provides further supportive evidence that COG6-CDG can present as a disorder of sexual differentiation.


Assuntos
Anormalidades Múltiplas/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Anormalidades Craniofaciais/genética , Transtornos do Desenvolvimento Sexual/genética , Atrofia Muscular/genética , Desenvolvimento Sexual/genética , Anormalidades Múltiplas/fisiopatologia , Códon sem Sentido/genética , Defeitos Congênitos da Glicosilação/complicações , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/fisiopatologia , Anormalidades Craniofaciais/complicações , Anormalidades Craniofaciais/fisiopatologia , Transtornos do Desenvolvimento Sexual/complicações , Transtornos do Desenvolvimento Sexual/fisiopatologia , Predisposição Genética para Doença , Complexo de Golgi/genética , Homozigoto , Humanos , Lactente , Recém-Nascido , Cariótipo , Masculino , Microcefalia/complicações , Microcefalia/genética , Microcefalia/fisiopatologia , Atrofia Muscular/complicações , Atrofia Muscular/fisiopatologia , Fenótipo
20.
J Org Chem ; 86(18): 12745-12761, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34469155

RESUMO

We report a straightforward synthetic strategy for the preparation of trihydroxypiperidine azasugars decorated with lipophilic chains at both the nitrogen and the adjacent carbon as potential inhibitors of the lysosomal enzyme glucocerebrosidase (GCase), which is involved in Gaucher disease. The procedure relies on the preparation of C-erythrosyl N-alkylated nitrones 10 through reaction of aldehyde 8 and primary amines 13 followed by oxidation of the imines formed in situ with the methyltrioxorhenium catalyst and urea hydrogen peroxide. The addition of octylMgBr to nitrone 10e provided access to both epimeric hydroxylamines 21 and 22 with opposite configuration at the newly created stereocenter in a stereodivergent and completely stereoselective way, depending on the absence or presence of BF3·Et2O. Final reductive amination and acetonide deprotection provided compounds 14 and 15 from low-cost d-mannose in remarkable 43 and 32% overall yields, respectively, over eight steps. The C-2 R-configured bis-alkylated trihydroxypiperidine 15 was the best ligand for GCase (IC50 = 15 µM), in agreement with MD simulations that allowed us to identify the chair conformation corresponding to the best binding affinity.


Assuntos
Doença de Gaucher , Glucosilceramidase , Aminação , Doença de Gaucher/tratamento farmacológico , Humanos , Oxirredução , Piperidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA