Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Health Prev Med ; 22(1): 67, 2017 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-29165158

RESUMO

We have read with interest the article by Lu et al. entitled "Association of excessive mobile phone use during pregnancy with birth weight: an adjunct study in Kumamoto of Japan Environment and Children's Study" published recently in the Environmental Health and Preventive Medicine. Although this paper addresses a very challenging issue, it has some shortcomings. Mortazavi et al. have previously studied the effects of ionizing and non-ionizing radiation on birth weight of newborns and found no statistical significant differences between the mean weight of newborns whose mothers had been exposed to electromagnetic fields (EMF) generated by mobile phones and those of non-exposed mothers. The study performed by Lu et al. cannot answer this very key question that whether ordinary use of mobile phone during pregnancy can lead to low birth weight. The origin of the controversy between the findings of these two studies and the shortcomings of the article by Lu et al. are discussed.


Assuntos
Uso do Telefone Celular , Telefone Celular , Peso ao Nascer , Criança , Campos Eletromagnéticos , Feminino , Humanos , Recém-Nascido , Japão , Gravidez
2.
Orthod Craniofac Res ; 19(4): 190-197, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27659276

RESUMO

AIM: To compare the effectiveness of 5% benzocaine gel and placebo gel on reducing pain caused by fixed orthodontic appliance activation. SETTING AND SAMPLE POPULATION: Thirty subjects (15-25 years) undergoing fixed orthodontics. METHODS AND MATERIALS: A randomized, double-blind, placebo-controlled and cross-over clinical trial study was conducted. Subjects were asked to apply a placebo gel and 5% benzocaine gel, exchangeable in two consecutive appointments, twice a day for 3 days and mark their level of pain on a VAS scale. The pain severity was evaluated by means of Mann-Whitney U-test for comparing two gel groups, Kruskal-Wallis nonparametric test for overall differences and post hoc test of Dunnett for paired multiple comparisons. p-value was assigned <0.05. RESULTS: The overall mean value of pain intensity for benzocaine and placebo gels was 0.89 and 1.15, respectively. The Mann-Whitney U-test indicated that there was no significant difference between overall pain in both groups (mean difference = 0.258 p ˂ 0.21). For both groups, pain intensity was significantly lower at 2, 6 and 24 h compared with pain experienced at days 2, 3 and 7. CONCLUSION: Benzocaine gel caused a decrease in pain perception at 2 h compared with placebo gel. Peak pain intensity was at 2 h for placebo gel and at 6 h for benzocaine gel, followed by a decline in pain perception from that point to day 7 for both gels.


Assuntos
Analgésicos/uso terapêutico , Benzocaína/uso terapêutico , Aparelhos Ortodônticos/efeitos adversos , Percepção da Dor/efeitos dos fármacos , Dor/tratamento farmacológico , Adolescente , Adulto , Analgésicos/administração & dosagem , Benzocaína/administração & dosagem , Estudos Cross-Over , Método Duplo-Cego , Feminino , Géis/uso terapêutico , Gengiva , Humanos , Masculino , Dor/etiologia , Dor/psicologia , Medição da Dor/métodos , Projetos de Pesquisa , Resultado do Tratamento
3.
Z Med Phys ; 34(1): 166-174, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38420703

RESUMO

NASA has encouraged studies on 226Ra deposition in the human brain to investigate the effects of exposure to alpha particles with high linear energy transfer, which could mimic some of the exposure astronauts face during space travel. However, this approach was criticized, noting that radium is a bone-seeker and accumulates in the skull, which means that the radiation dose from alpha particles emitted by 226Ra would be heavily concentrated in areas close to cranial bones rather than uniformly distributed throughout the brain. In the high background radiation areas of Ramsar, Iran, extremely high levels of 226Ra in soil contribute to a large proportion of the inhabitants' radiation exposure. A prospective study on Ramsar residents with a calcium-rich diet was conducted to improve the dose uniformity due to 226Ra throughout the cerebral and cerebellar parenchyma. The study found that exposure of the human brain to alpha particles did not significantly affect working memory but was significantly associated with increased reaction times. This finding is crucial because astronauts on deep space missions may face similar cognitive impairments due to exposure to high charge and energy particles. The current study was aimed to evaluate the validity of the terrestrial model using the Geant4 Monte Carlo toolkit to simulate the interactions of alpha particles and representative cosmic ray particles, acknowledging that these radiation types are only a subset of the complete space radiation environment.


Assuntos
Rádio (Elemento) , Humanos , Estudos Prospectivos , Transferência Linear de Energia , Encéfalo , DNA , Método de Monte Carlo
5.
Neurol Sci ; 38(11): 2059-2060, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28689225
8.
J Biomed Phys Eng ; 11(1): 103-108, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33564645

RESUMO

There is a growing interest in examining alterations in telomere length as a reliable biomarker of general health, as well as a marker for predicting later morbidity and mortality. Substantial evidence shows that telomere length is associated with aging; telomere shortening acts as a "counting mechanism" that drives replicative senescence by limiting the mitotic potential of normal (but not malignant) cells. In this Correspondence, we attempt to answer the question of why recently published papers about telomere length alterations increase our uncertainty rather than reduce it. This discussion includes three major research areas regarding telomere length: environmental stressors, aging, and life span. Our review suggests that activation of telomerase activity due to stressors in space might be a double-edged sword with both favorable and unfavorable consequences. The selection of an effect's consequence must clearly elucidate the experimental conditions as well as associated stressors. In this Correspondence, we attempt to answer the question of why recently published papers about telomere length alterations increase our uncertainty rather than reduce it. The selection of an effect's consequence must clearly elucidate the experimental conditions as well as associated stressors. Both positive and negative consequences must be clearly addressed in order to bolster the conclusions, as well as identify future research directions.

9.
J Biomed Phys Eng ; 11(1): 109-114, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33564646

RESUMO

Neanderthal genes possibly gave modern human protection against viruses. However, a recent study revealed that that a long sequence of DNA that is inherited from our Neanderthal ancestors can be linked to severe COVID-19 infection and hospitalization. Substantial evidence now indicates that our genetic background may be involved in the transmissibility of SARS-CoV-2 and the rapid progress of COVID-19 in some infected individuals. Although both morbidity and mortality of COVID-19 strongly depends on key factors such as age and co-existing health conditions, potential classes of human genomic variants possibly affect the likelihood of SARS-CoV-2 infection and its progress. Despite Iran and Mongolia seem to share the same SARS-CoV-2 mutation cluster, the COVID-19 mortality rates in these two countries are drastically different. While the population in Iran is 25.8 times higher than that of Mongolia, the number of confirmed cases is 1170 times higher. Moreover, the death rate shows a drastic difference. Since Neanderthals interbred with modern humans in Middle East between 47,000 and 65,000 years ago before going extinct 40,000 years ago, some Iranians have much more Neanderthal DNA than other people. Although neither genetic background nor environmental factors alone can determine our risk of developing severe COVID-19, our genes clearly affect both the development and progression of infectious diseases including COVID-19. Given these considerations, we believe that these great differences, at least to some extent, can be due to the proportion of Neanderthal genes among the people of these two countries.

10.
J Biomed Phys Eng ; 8(1): 141-146, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29732349

RESUMO

A large body of evidence now indicates that the amount of mercury released from dental amalgam fillings can be significantly accelerated by exposure to radiofrequency electromagnetic fields (RF-EMFs) such as common mobile phones and magnetic resonance imaging (MRI). Studies performed on the increased microleakage of dental amalgam restorations after exposure to RF-EMFs have further supported these findings. Although the accelerated microleakage induced by RF-EMFs is clinically significant, the entire mechanisms of this phenomenon are not clearly understood. In this paper, we introduce "Triple M" effect, a new evidence-based theory which can explain the accelerated microleakage of dental amalgam fillings after exposure to different sources of electromagnetic radiation. Based on this theory, there are saliva-filled tiny spaces between amalgam and the tooth. Exposure of the oral cavity to RF-EMFs increases the energy of these small amounts of saliva. Due to the small mass of saliva in these tiny spaces, a small amount of energy will be required for heating. Moreover, reflection of the radiofrequency radiation on the inner walls of the tiny spaces causes interference which in turn produces some "hot spots" in these spaces. Finally, formation of gas bubbles in response to increased temperature and very rapid expansion of these bubbles will accelerate the microleakage of amalgam. Experiments that confirm the validity of this theory are discussed.

11.
J Biomed Phys Eng ; 8(4): 447-452, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30568934

RESUMO

Since the early days of human life on the Earth, our skin has been exposed to different levels of light. Recently, due to inevitable consequences of modern life, humans are not exposed to adequate levels of natural light during the day but they are overexposed to relatively high levels of artificial light at night. Skin is a major target of oxidative stress and the link between aging and oxidative stress is well documented. Especially, extrinsic skin aging can be caused by oxidative stress. The widespread use of light emitting diodes (LEDs) and the rapidly increasing use of smartphones, tablets, laptops and desktop computers have led to a significant rise in the exposure of human eyes to short-wavelength visible light. Recent studies show that exposure of human skin cells to light emitted from electronic devices, even for exposures as short as 1 hour, may cause reactive oxygen species (ROS) generation, apoptosis, and necrosis. The biological effects of exposure to short-wavelength visible light in blue region in humans and other living organisms were among our research priorities at the Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC). Today, there is a growing concern over the safety of the light sources such as LEDs with peak emissions in the blue light range (400-490 nm). Recent studies aimed at investigating the effect of exposure to light emitted from electronic device on human skin cells, shows that even short exposures can increase the generation of reactive oxygen species. However, the biological effects of either long-term or repeated exposures are not fully known, yet. Furthermore, there are reports indicating that frequent exposure to visible light spectrum of the selfie flashes may cause skin damage and accelerated skin ageing. In this paper we have addressed the different aspects of potential effects of exposure to the light emitted from smartphones' digital screens as well as smartphones' photoflashes on premature aging of the human skin. Specifically, the effects of blue light on eyes and skin are discussed. Based on current knowledge, it can be suggested that changing the spectral output of LED-based smartphones' flashes can be introduced as an effective method to reduce the adverse health effects associated with exposure to blue light.

12.
J Biomed Phys Eng ; 8(1): 151-152, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29732351

RESUMO

Miranda-Filho et al. in their recently published paper entitled "Cancers of the brain and CNS: global patterns and trends in incidence" provided a global status report of the geographic and temporal variations in the incidence of brain and CNS cancers in different countries across continents worldwide. While the authors confirm the role of genetic risk factors and ionizing radiation exposures, they claimed that no firm conclusion could be drawn about the role of exposure to non-ionizing radiation. The paper authored by Miranda-Filho et al. not only addresses a challenging issue, it can be considered as a good contribution in the field of brain and CNS cancers. However, our correspondence addresses a basic shortcoming of this paper about the role of electromagnetic fields and cancers and provides evidence showing that exposure to radiofrequency electromagnetic fields (RF-EMFs), at least at high levels and long durations, can increases the risk of cancer.

13.
J Biomed Phys Eng ; 8(4): 375-380, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30568927

RESUMO

BACKGROUND: It has been shown that short-wavelength blue component of the visible light spectrum can alter the circadian rhythm and suppress the level of melatonin hormone. The short-wavelength light emitted by smartphones' screens can affect the sleep quality of the people who use these devices at night through suppression of melatonin. OBJECTIVES: In this study, we examined the effects of covering the screens of smartphones with different filters (changing the effective wavelength of the light) on sleep delay time in 43 healthy students. MATERIALS AND METHODS: Volunteer students were asked to go to bed at 23:00 and to use their mobile phones in bed for watching a natural life documentary movie for 60 minutes. No filter was used for one night while amber and blue filters were used for other 2 nights. Photospectrometry method was used to determine the output spectrum of the light passing through the filters used for covering the screens of the mobile phones. The order for utilizing amber or blue filters or using no filter was selected randomly. After 1 hour, the participants were asked to record their sleep delay time measured by a modified form of sleep time record sheet. RESULTS: The mean sleep delay time for the "no-filter" night was 20.84±9.15 minutes, while the sleep delay times for the nights with amber and blue filters were 15.26±1.04 and 26.33±1.59 minutes, respectively. CONCLUSION: The findings obtained in this study support this hypothesis that blue light possibly suppresses the secretion of melatonin more than the longer wavelengths of the visible light spectrum. Using amber filter in this study significantly improved the sleep quality. Altogether, these findings lead us to this conclusion that blocking the short-wavelength component of the light emitted by smartphones' screens improves human sleep.

14.
J Biomed Phys Eng ; 8(3): 333-336, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30320037

RESUMO

MRI workers are occupationally exposed to static and time-varying gradient magnetic fields. While the 24-hour time-averaged exposure to static magnetic fields is about a few mT, the maximum static field strength can be as high as 500 mT during patient setup. Over the past several years, our laboratory has performed extensive experiments on the health effects of exposure of animal models and humans to different sources of electromagnetic fields such as cellular phones, mobile base stations, mobile phone jammers, laptop computers, radars, dentistry cavitrons and MRI. This study is to investigate the adverse health effects in MRI workers and also to assess the effect of exposure of MRI workers to static magnetic fields on their cognitive functions. In the first phase of this study a questionnaire was designed to collect information from 120 MRI personnel. The collection of data about the adverse health effects was based on self-reporting by the participants. In the second phase, 47 volunteer university students were asked to continuously move around a 1.5 T MRI scanner. Visual reaction time and working memory tests were performed on all participants before and after the experiment. Forward digit span and backward digit span were used for assessing the working memory. Furthermore, participants were asked to report the symptoms they had experienced during the movement. The first phase of our study showed increased frequencies of adverse health effects in MRI workers. In this study the rates of self-reported symptoms such as a headache, sleep problems, myalgia, palpitation, fatigue, concentration problems, attention problems, nervousness and backpain were possibly affected by static magnetic field. Furthermore we found that reaction time and working memory could be influenced by the movements of the body around a MRI scanner. It can be concluded that movement through a high magnetic field can also lead to some adverse cognitive effects in MRI staff.

15.
Sci Total Environ ; 609: 1, 2017 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-28732291

RESUMO

This correspondence refers to the Science of the Total Environment article by Gonzalez-Rubio et al. entitled "Radiofrequency electromagnetic fields and some cancers of unknown etiology: An ecological study". Authors of this paper have presented the findings of their preliminary epidemiological study which combined epidemiology, statistics and geographical information systems (GIS). Gonzalez-Rubio et al. have analyzed the possible link between exposure to Radiofrequency Electromagnetic Fields (RF-EMF) in the city of Albacete, Spain and the incidence of cancers such as lymphomas, and brain tumors. The shortcomings of this study are discussed.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Cidades , Ondas de Rádio , Espanha
17.
J Biomed Phys Eng ; 7(2): 163-168, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28580338

RESUMO

BACKGROUND: Due to rapid advances in modern technologies such as telecommunication technology, the world has witnessed an exponential growth in the use of digital handheld devices (e.g. smartphones and tablets). This drastic growth has resulted in increased global concerns about the safety of these devices. Smartphones, tablets, laptops, and other digital screens emit high levels of short-wavelength visible light (i.e. blue color region in the visible light spectrum). MATERIAL AND METHODS: At a dark environment, Staphylococcus aureus bacteria were exposed to the light emitted from common tablets/smartphones. The control samples were exposed to the same intensity of light generated by a conventional incandescent light bulb. The growth rate of bacteria was examined by measuring the optical density (OD) at 625 nm by using a spectrophotometer before the light exposure and after 30 to 330 minutes of light exposure. RESULTS: The growth rates of bacteria in both smartphone and tablet groups were higher than that of the control group and the maximum smartphone/control and tablet/control growth ratios were observed in samples exposed to digital screens' light for 300 min (ratios of 3.71 and 3.95, respectively). CONCLUSION: To the best of our knowledge, this is the first study that investigates the effect of exposure to light emitted from digital screens on the proliferation of Staphylococcus aureus and its association with acne pathogenesis. Our findings show that exposure to short-wavelength visible light emitted from smartphones and tablets can increase the proliferation of Staphylococcus aureus.

18.
J Biomed Phys Eng ; 6(1): 27-32, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27026952

RESUMO

BACKGROUND: Substantial evidence indicates that exposure to electromagnetic fields (EMF) above certain levels can affect human health through triggering some biological responses. According to WHO, short-term exposure to EMF at the levels present in the home/environment do not cause any apparent detrimental effects in healthy individuals. However, now, there is a debate on whether long-term exposure to low level EMF can evoke detrimental biological responses. Although based on the Communications Act of 1934, selling, advertising, using, or importing mobile jammers which block cell phone calls and text messages are illegal acts, in some countries these devices are being used for security purpose and for prevention of cheating during examinations. METHODS: In this study 30 male Wistar rats were randomly divided into 3 groups of 10 each. The control group received no radiation. The sham exposure group was exposed to a switched-off jammer device. After fasting for 12 hours, the exposure group was exposed to EMFs at a distance of 50 cm from the jammer. Blood samples were collected from the tail vein after 24, 48 and72 hours and fasting blood sugar was measured by using a common blood glucose monitor (BIONIME GM110, Taiwan). The significance level was considered 5% and SPSS Ver. 21 was used for statistical analysis. The data were analyzed by ANOVA followed by Tukey's test. RESULTS: A statistically significant difference was observed between blood sugar level in the control and exposure groups after 24, 48 and 72 hours of continuous irradiation (p values were <0.001, <0.001 and 0.002, respectively). No significant difference was found between the level of fasting blood sugar in control and sham groups. CONCLUSION: Short-term exposure to electromagnetic field generated by mobile phone jammer can reduce blood sugar level in adult male rats. These findings, in contrast with our previous results, lead us to this conclusion that the use of these signal blocking devices in very specific circumstances may have some therapeutic effects. However, further studies have to be performed to find out the exact mechanism by which Jammer EMFs reduce fasting blood sugar.

19.
J Biomed Phys Eng ; 6(4): 279-284, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28144597

RESUMO

As a tendency to use new technologies, gadgets such as laptop computers are becoming more popular among students, teachers, businessmen and office workers. Today laptops are a great tool for education and learning, work and personal multimedia. Millions of men, especially those in the reproductive age, are frequently using their laptop computers on the lap (thigh). Over the past several years, our lab has focused on the health effects of exposure to different sources of electromagnetic fields such as cellular phones, mobile base stations, mobile phone jammers, laptop computers, radars, dentistry cavitrons and Magnetic Resonance Imaging (MRI). Our own studies as well as the studies performed by other researchers indicate that using laptop computers on the lap adversely affects the male reproductive health. When it is placed on the lap, not only the heat from a laptop computer can warm men's scrotums, the electromagnetic fields generated by laptop's internal electronic circuits as well as the Wi-Fi Radiofrequency radiation hazards (in a Wi-Fi connected laptop) may decrease sperm quality. Furthermore, due to poor working posture, laptops should not be used on the lap for long hours.

20.
J Biomed Phys Eng ; 6(4): 235-242, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28144593

RESUMO

BACKGROUND: The rapidly increasing use of mobile phones has led to public concerns about possible health effects of these popular communication devices. This study is an attempt to investigate the effects of radiofrequency (RF) radiation produced by GSM mobile phones on the insulin release in rats. METHODS: Forty two female adult Sprague Dawley rats were randomly divided into 4 groups. Group1 were exposed to RF radiation 6 hours per day for 7 days. Group 2 received sham exposure (6 hours per day for 7 days). Groups 3 and 4 received RF radiation 3 hours per day for 7 days and sham exposure (3 hours per day), respectively. The specific absorption rate (SAR) of RF was 2.0 W/kg. RESULTS: Our results showed that RF radiations emitted from mobile phone could not alter insulin release in rats. However, mild to severe inflammatory changes in the portal spaces of the liver of rats as well as damage in the cells of islet of Langerhans were observed. These changes were linked with the duration of the exposures. CONCLUSION: RF exposure can induce inflammatory changes in the liver as well causing damage in the cells of islet of Langerhans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA