Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(4)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33479179

RESUMO

We show that the Higgs mode of a superconductor, which is usually challenging to observe by far-field optics, can be made clearly visible using near-field optics by harnessing ultraconfined graphene plasmons. As near-field sources we investigate two examples: graphene plasmons and quantum emitters. In both cases the coupling to the Higgs mode is clearly visible. In the case of the graphene plasmons, the coupling is signaled by a clear anticrossing stemming from the interaction of graphene plasmons with the Higgs mode of the superconductor. In the case of the quantum emitters, the Higgs mode is observable through the Purcell effect. When combining the superconductor, graphene, and the quantum emitters, a number of experimental knobs become available for unveiling and studying the electrodynamics of superconductors.

2.
Nano Lett ; 22(6): 2320-2327, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35286099

RESUMO

Cathodoluminescence spectroscopy performed in an electron microscope has proven a versatile tool for analyzing the near- and far-field optical response of plasmonic and dielectric nanostructures. Nevertheless, the transition radiation produced by electron impact is often disregarded in the interpretation of the spectra recorded from resonant nanoparticles. Here we show, experimentally and theoretically, that transition radiation can by itself generate distinct resonances that, depending on the time-of-flight of the electron beam inside the particle, can result from constructive or destructive interference in time. Superimposed on the eigenmodes of the investigated structures, these resonances can distort the recorded spectrum and lead to potentially erroneous assignment of modal characters to the spectral features. We develop an intuitive analogy that helps distinguish between the two contributions. As an example, we focus on the case of silicon nanospheres and show that our analysis facilitates the unambiguous interpretation of experimental measurements on Mie-resonant nanoparticles.

3.
Opt Lett ; 46(4): 833-836, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33577523

RESUMO

Noble metals with well-defined crystallographic orientation constitute an appealing class of materials for controlling light-matter interactions on the nanoscale. Nonlinear optical processes, being particularly sensitive to anisotropy, are a natural and versatile probe of crystallinity in nano-optical devices. Here we study the nonlinear optical response of monocrystalline gold flakes, revealing a polarization dependence in second-harmonic generation from the {111} surface that is markedly absent in polycrystalline films. Our findings confirm that second-harmonic microscopy is a robust and non-destructive method for probing the crystallographic orientation of gold, and can serve as a guideline for enhancing nonlinear response in plasmonic systems.

4.
Phys Rev Lett ; 126(17): 177401, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988409

RESUMO

The connection between chirality and electromagnetism has attracted much attention through the recent history of science, allowing the discovery of crucial nonreciprocal optical phenomena within the context of fundamental interactions between matter and light. A major phenomenon within this family is the so-called Faraday chiral anisotropy, the long-predicted but yet unobserved effect which arises due to the correlated coaction of both natural and magnetically induced optical activities at concurring wavelengths in chiral systems. Here, we report on the detection of the elusive anisotropic Faraday chiral phenomenon and demonstrate its enantioselectivity. The existence of this fundamental effect reveals the accomplishment of envisioned nonreciprocal electromagnetic metamaterials referred to as Faraday chiral media, systems where novel electromagnetic phenomena such as negative refraction of light at tunable wavelengths or even negative reflection can be realized. From a more comprehensive perspective, our findings have profound implications for the general understanding of parity-violating photon-particle interactions in magnetized media.

5.
Rep Prog Phys ; 83(8): 082401, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32726300

RESUMO

Rooted in quantum optics and benefiting from its well-established foundations, strong coupling in nanophotonics has experienced increasing popularity in recent years. With nanophotonics being an experiment-driven field, the absence of appropriate theoretical methods to describe ground-breaking advances has often emerged as an important issue. To address this problem, the temptation to directly transfer and extend concepts already available from quantum optics is strong, even if a rigorous justification is not always available. In this review we discuss situations where, in our view, this strategy has indeed overstepped its bounds. We focus on exciton-plasmon interactions, and particularly on the idea of calculating the number of excitons involved in the coupling. We analyse how, starting from an unfounded interpretation of the term N/V that appears in theoretical descriptions at different levels of complexity, one might be tempted to make independent assumptions for what the number N and the volume V are, and attempt to calculate them separately. Such an approach can lead to different, often contradictory results, depending on the initial assumptions (e.g. through different treatments of V as the-ambiguous in plasmonics-mode volume). We argue that the source of such contradictions is the question itself-How many excitons are coupled?, which disregards the true nature of the coupled components of the system, has no meaning and often not even any practical importance. If one is interested in validating the quantum nature of the system-which appears to be the motivation driving the pursuit of strong coupling with small N-one could instead focus on quantities such as the photon emission rate or the second-order correlation function. While many of the issues discussed here may appear straightforward to specialists, our target audience is predominantly newcomers to the field, either students or scientists specialised in different disciplines. We have thus tried to minimise the occurrence of proofs and overly-technical details, and instead provide a qualitative discussion of analyses that should be avoided, hoping to facilitate further growth of this promising area.

6.
Opt Express ; 28(9): 13938-13948, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32403859

RESUMO

Dark plasmonic modes have interesting properties, including longer lifetimes and narrower linewidths than their radiative counterpart, and little to no radiative losses. However, they have not been extensively studied yet due to their optical inaccessibility. In this work, we systematically investigated the dark radial breathing modes (RBMs) in monocrystalline gold nanodisks, specifically their outcoupling behavior into the far-field by cathodoluminescence spectroscopy. Increasing the substrate thickness resulted in an up to 4-fold enhanced visibility. This is attributed to breaking the mirror symmetry by the high-index substrate, creating an effective dipole moment. Furthermore, the resonance energy of the dark RMBs can be easily tuned by varying the nanodisk diameter, making them promising candidates for nanophotonic applications.

7.
Nano Lett ; 19(11): 8040-8048, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31560545

RESUMO

Although Si acts as an electrical semiconductor, it has properties of an optical dielectric. Here, we revisit the behavior of Si as a plasmonic metal. This behavior was previously shown to arise from strong interband transitions that lead to negative permittivity of Si across the ultraviolet spectral range. However, few have studied the plasmonic characteristics of Si, particularly in its nanostructures. In this paper, we report localized plasmon resonances of Si nanostructures and the observation of plasmon hybridization in the UV (∼250 nm wavelength). In addition, simulation results show that Si nanodisk dimers can achieve a local intensity enhancement greater than ∼500-fold in a 1 nm gap. Lastly, we investigate hybrid Si-Al nanostructures to achieve sharp resonances in the UV, due to the coupling between plasmon resonances supported by Si and Al nanostructures. These results will have potential applications in the UV range, such as nanostructured devices for spectral filtering, plasmon-enhanced Si photodetectors, interrogation of molecular chirality, and catalysis. It could have significant impact on UV photolithography on patterned Si structures.

8.
Nano Lett ; 18(10): 6265-6270, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30216727

RESUMO

Metasurfaces based on gap surface-plasmon resonators allow one to arbitrarily control the phase, amplitude, and polarization of reflected light with high efficiency. However, the performance of densely packed metasurfaces is reduced, often quite significantly, in comparison with simple analytical predictions. We argue that this reduction is mainly because of the near-field coupling between metasurface elements, which results in response from each element being different from the one anticipated by design simulations, which are commonly conducted for each individual element being placed in an artificial periodic arrangement. In order to study the influence of near-field coupling, we fabricate meta-elements of varying sizes arranged in quasi-periodic arrays so that the immediate environment of same size elements is different for those located in the middle and at the border of the arrays. We study the near-field using a phase-resolved scattering-type scanning near-field optical microscopy (s-SNOM) and conducting numerical simulations. By comparing the near-field maps from elements of the same size but different placements we evaluate the near-field coupling strength, which is found to be significant for large and densely packed elements. This technique is quite generic and can be used practically for any metasurface type in order to precisely measure the near-field response from each individual element and identify malfunctioning ones, providing feedback to their design and fabrication, thereby allowing one to improve the efficiency of the whole metasurface.

9.
Nano Lett ; 17(4): 2234-2239, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28225624

RESUMO

The advances in recent nanofabrication techniques have facilitated explorations of metal structures into nanometer scales, where the traditional local-response Drude model with hard-wall boundary conditions fails to accurately describe their optical responses. The emerging nonlocal effects in single ultrasmall silver nanoparticles have been experimentally observed in single-particle spectroscopy enabled by the unprecedented high spatial resolution of electron energy loss spectroscopy (EELS). However, the unambiguous optical observation of such new effects in gold nanoparticles has yet not been reported, due to the extremely weak scattering and the obscuring fingerprint of strong interband transitions. Here we present a nanosystem, a superlattice monolayer formed by sub-10 nm gold nanoparticles. Plasmon resonances are spectrally well-separated from interband transitions, while exhibiting clearly distinguishable blueshifts compared to predictions by the classical local-response model. Our far-field spectroscopy was performed by a standard optical transmission and reflection setup, and the results agreed excellently with the hydrodynamic nonlocal model, opening a simple and widely accessible way for addressing quantum effects in nanoplasmonic systems.

10.
Phys Rev Lett ; 118(15): 157402, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28452500

RESUMO

The classical treatment of plasmonics is insufficient at the nanometer-scale due to quantum mechanical surface phenomena. Here, an extension of the classical paradigm is reported which rigorously remedies this deficiency through the incorporation of first-principles surface response functions-the Feibelman d parameters-in general geometries. Several analytical results for the leading-order plasmonic quantum corrections are obtained in a first-principles setting; particularly, a clear separation of the roles of shape, scale, and material is established. The utility of the formalism is illustrated by the derivation of a modified sum rule for complementary structures, a rigorous reformulation of Kreibig's phenomenological damping prescription, and an account of the small-scale resonance shifting of simple and noble metal nanostructures.

11.
Opt Express ; 24(15): 16743-51, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27464128

RESUMO

Electromagnetic field enhancement (FE) effects occurring in thin gold films 3-12-nm are investigated with two-photon photoluminescence (TPL) and Raman scanning optical microscopies. The samples are characterized using scanning electron microscopy images and linear optical spectroscopy. TPL images exhibit a strong increase in the level of TPL signals for films thicknesses 3-8-nm, near the percolation threshold. For some thicknesses, TPL measurements reveal super-cubic dependences on the incident power. We ascribe this feature to the occurrence of very strongly localized and enhanced electromagnetic fields due to multiple light scattering in random nanostructures that might eventually lead to white-light generation. Raman images exhibit increasing Raman signals when decreasing the film thickness from 12 to 6-nm and decreasing signal for the 3-nm-film. This feature correlates with the TPL observations indicating that highest FE is to be expected near the percolation threshold.

12.
Nano Lett ; 15(7): 4393-400, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26042835

RESUMO

Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultralarge absorption bandwidth, and extremely fast material response. In particular, the opportunity to control optoelectronic properties through tuning of the Fermi level enables electro-optical modulation, optical-optical switching, and other optoelectronics applications. However, achieving a high modulation depth remains a challenge because of the modest graphene-light interaction in the graphene-silicon devices, typically, utilizing only a monolayer or few layers of graphene. Here, we comprehensively study the interaction between graphene and a microring resonator, and its influence on the optical modulation depth. We demonstrate graphene-silicon microring devices showing a high modulation depth of 12.5 dB with a relatively low bias voltage of 8.8 V. On-off electro-optical switching with an extinction ratio of 3.8 dB is successfully demonstrated by applying a square-waveform with a 4 V peak-to-peak voltage.

13.
Opt Express ; 23(25): 32075-9, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26698998

RESUMO

The 7th International Conference on Surface Plasmon Photonics (SPP7) was held in Jerusalem, Israel from May 31st to June 5th, 2015. This independent series of biennial conferences is widely regarded as the premier series in the field, and the 7th edition maintained the tradition of excellence. This Focus Issue collects 23 papers related to research presented at SPP7. While this number is small compared to the total number of papers presented at the conference, the issue is representative and provides a good overview of the field at this point in time.

14.
Opt Express ; 23(15): 19074-81, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367570

RESUMO

At low frequencies outside the plasmonic range, strongly confined surface waves can be achieved on periodically structured metal surfaces, thereby allowing for the design of compact electromagnetic guiding devices. Here, we propose an approach to realize highly efficient transmission of spoof surface plasmons around 90-degree sharp bends on ultrathin metallic films in the microwave regime. We demonstrate that by judiciously engineering the structure, the dispersion relation can be designed to reduce the scattering. Furthermore, the reflection can be suppressed by proper structural decoration at the bending corner. A one-dimensional scattering theory is employed to understand and verify the transmission properties of our waveguide bend structure. Our design scheme is not restricted to the specific structure we propose here but can be applied to other guiding components built up on two dimensional metal surfaces.

15.
Opt Lett ; 40(5): 839-42, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25723446

RESUMO

Within our recently proposed generalized nonlocal optical response (GNOR) model, where nonlocal response is included by taking into account both convective and diffusive currents of the conduction electrons, we revisit the fundamental problem of an optically excited plasmonic dimer. We consider the transition from separated dimers via touching dimers to finally overlapping dimers. In particular, we focus on the touching case, showing a fundamental limit on the hybridization of the bonding plasmon modes due to nonlocality. Using transformation optics, we determine a simple analytical equation for the resonance energies.

16.
Nano Lett ; 14(8): 4499-504, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25003515

RESUMO

We present reflective plasmonic colors based on the concept of localized surface plasmon resonances (LSPR) for plastic consumer products. In particular, we bridge the widely existing technological gap between clean-room fabricated plasmonic metasurfaces and the practical call for large-area structurally colored plastic surfaces robust to daily life handling. We utilize the hybridization between LSPR modes in aluminum nanodisks and nanoholes to design and fabricate bright angle-insensitive colors that may be tuned across the entire visible spectrum.

17.
Nano Lett ; 14(5): 2907-13, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24707792

RESUMO

Nanostructured graphene on SiO2 substrates paves the way for enhanced light-matter interactions and explorations of strong plasmon-phonon hybridization in the mid-infrared regime. Unprecedented large-area graphene nanodot and antidot optical arrays are fabricated by nanosphere lithography, with structural control down to the sub-100 nm regime. The interaction between graphene plasmon modes and the substrate phonons is experimentally demonstrated, and structural control is used to map out the hybridization of plasmons and phonons, showing coupling energies of the order 20 meV. Our findings are further supported by theoretical calculations and numerical simulations.

18.
Nano Lett ; 13(10): 4690-6, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24010940

RESUMO

The combination of graphene with noble-metal nanostructures is currently being explored for strong light-graphene interactions enhanced by plasmons. We introduce a novel hybrid graphene-metal system for studying light-matter interactions with gold-void nanostructures exhibiting resonances in the visible range. Enhanced coupling of graphene to the plasmon modes of the nanovoid arrays results in significant frequency shifts of the underlying plasmon resonances, enabling 30% enhanced absolute light absorption by adding a monolayer graphene and up to 700-fold enhancement of the Raman response of the graphene. These new perspectives enable us to verify the presence of graphene on gold-void arrays, and the enhancement even allows us to accurately quantify the number of layers. Experimental observations are further supported by numerical simulations and perturbation-theory analysis. The graphene gold-void platform is beneficial for sensing of molecules and placing Rhodamine 6G (R6G) dye molecules on top of the graphene; we observe a strong enhancement of the R6G Raman fingerprints. These results pave the way toward advanced substrates for surface-enhanced Raman scattering (SERS) with potential for unambiguous single-molecule detection on the atomically well-defined layer of graphene.


Assuntos
Grafite/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Ouro/química , Luz , Análise Espectral Raman , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
19.
Opt Express ; 21(3): 3486-91, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23481806

RESUMO

We investigate the performance of bends and splitters in graphene nanoribbon waveguides. Although the graphene waveguides are lossy themselves, we show that bends and splitters do not induce any additional loss provided that the nanoribbon width is sub-wavelength. We use transmission line theory to qualitatively interpret the behavior observed in our simulation. Our results pave a promising way to realize ultra-compact devices operating in the terahertz region.


Assuntos
Desenho Assistido por Computador , Grafite/química , Modelos Teóricos , Nanotubos/química , Ressonância de Plasmônio de Superfície/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Nanotubos/ultraestrutura , Espalhamento de Radiação
20.
Opt Express ; 21(12): 15026-36, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23787690

RESUMO

We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.


Assuntos
Hidrodinâmica , Lentes , Modelos Teóricos , Nanopartículas/química , Nanopartículas/ultraestrutura , Refratometria/instrumentação , Simulação por Computador , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA