Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38585902

RESUMO

Phenotypic profiling by high throughput microscopy has become one of the leading tools for screening large sets of perturbations in cellular models. Of the numerous methods used over the years, the flexible and economical Cell Painting (CP) assay has been central in the field, allowing for large screening campaigns leading to a vast number of data-rich images. Currently, to analyze data of this scale, available open-source software ( i.e. , CellProfiler) requires computational resources that are not available to most laboratories worldwide. In addition, the image-embedded cell-to-cell variation of responses within a population, while collected and analyzed, is usually averaged and unused. Here we introduce SPACe ( S wift P henotypic A nalysis of Ce lls), an open source, Python-based platform for the analysis of single cell image-based morphological profiles produced by CP experiments. SPACe can process a typical dataset approximately ten times faster than CellProfiler on common desktop computers without loss in mechanism of action (MOA) recognition accuracy. It also computes directional distribution-based distances (Earth Mover's Distance - EMD) of morphological features for quality control and hit calling. We highlight several advantages of SPACe analysis on CP assays, including reproducibility across multiple biological replicates, easy applicability to multiple (∼20) cell lines, sensitivity to variable cell-to-cell responses, and biological interpretability to explain image-based features. We ultimately illustrate the advantages of SPACe in a screening campaign of cell metabolism small molecule inhibitors which we performed in seven cell lines to highlight the importance of testing perturbations across models.

2.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352333

RESUMO

Respiratory syncytial virus (RSV) is a common cause of respiratory infections, causing significant morbidity and mortality, especially in young children. Why RSV infection in children is more severe as compared to healthy adults is not fully understood. In the present study, we infect both pediatric and adult human nose organoid-air liquid interface (HNO-ALIs) cell lines with two contemporary RSV isolates and demonstrate how they differ in virus replication, induction of the epithelial cytokine response, cell injury, and remodeling. Pediatric HNO-ALIs were more susceptible to early RSV replication, elicited a greater overall cytokine response, demonstrated enhanced mucous production, and manifested greater cellular damage compared to their adult counterparts. Adult HNO-ALIs displayed enhanced mucus production and robust cytokine response that was well controlled by superior regulatory cytokine response and possibly resulted in lower cellular damage than in pediatric lines. Taken together, our data suggest substantial differences in how pediatric and adult upper respiratory tract epithelium responds to RSV infection. These differences in epithelial cellular response can lead to poor mucociliary clearance and predispose infants to a worse respiratory outcome of RSV infection.

3.
J Infect ; 89(6): 106305, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39389204

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) causes significant morbidity and mortality, especially in young children. Why RSV infection in children is more severe compared to healthy adults is not fully understood. METHODS: We used ex-vivo human nasal organoid platforms from infants and adults to investigate the underlying mechanism of this disease disparity at the initial site of RSV replication, the nasal epithelium. RESULTS: Infant-derived human nasal organoid-air liquid interface (HNO-ALIs) lines were more susceptible to early RSV replication. Moreover, infant-derived HNO-ALIs elicited a statistically significant greater overall cytokine response, enhanced mucous production, and greater cellular damage compared to their adult counterparts. Furthermore, the adult cytokine response was associated with a superior regulatory cytokine response, which could explain less cellular damage than in infant lines. CONCLUSIONS: Our data highlights substantial differences in how infant and adult upper respiratory tract epithelium responds to RSV infection at the cellular level. These differences in epithelial cellular response can lead to impaired mucociliary clearance, a more dysregulated innate immune response predisposing infants to more severe RSV infection compared to adults.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA