Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34400503

RESUMO

Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size-fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.


Assuntos
Fertilidade , Modelos Biológicos , Regeneração , Árvores/crescimento & desenvolvimento , Florestas
2.
Ecol Appl ; 32(5): e2596, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35340078

RESUMO

In Europe, forest management has controlled forest dynamics to sustain commodity production over multiple centuries. Yet over-regulation for growth and yield diminishes resilience to environmental stress as well as threatens biodiversity, leading to increasing forest susceptibility to an array of disturbances. These trends have stimulated interest in alternative management systems, including natural dynamics silviculture (NDS). NDS aims to emulate natural disturbance dynamics at stand and landscape scales through silvicultural manipulations of forest structure and landscape patterns. We adapted a "Comparability Index" (CI) to assess convergence/divergence between natural disturbances and forest management effects. We extended the original CI concept based on disturbance size and frequency by adding the residual structure of canopy trees after a disturbance as a third dimension. We populated the model by compiling data on natural disturbance dynamics and management from 13 countries in Europe, covering four major forest types (i.e., spruce, beech, oak, and pine-dominated forests). We found that natural disturbances are highly variable in size, frequency, and residual structure, but European forest management fails to encompass this complexity. Silviculture in Europe is skewed toward even-aged systems, used predominately (72.9% of management) across the countries assessed. The residual structure proved crucial in the comparison of natural disturbances and silvicultural systems. CI indicated the highest congruence between uneven-aged silvicultural systems and key natural disturbance attributes. Even so, uneven-aged practices emulated only a portion of the complexity associated with natural disturbance effects. The remaining silvicultural systems perform poorly in terms of retention compared to tree survivorship after natural disturbances. We suggest that NDS can enrich Europe's portfolio of management systems, for example where wood production is not the primary objective. NDS is especially relevant to forests managed for habitat quality, risk reduction, and a variety of ecosystem services. We suggest a holistic approach integrating NDS with more conventional practices.


Assuntos
Ecossistema , Florestas , Biodiversidade , Conservação dos Recursos Naturais/métodos , Europa (Continente) , Agricultura Florestal/métodos , Árvores
3.
Ecol Lett ; 21(12): 1833-1844, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30230201

RESUMO

Climatically controlled allocation to reproduction is a key mechanism by which climate influences tree growth and may explain lagged correlations between climate and growth. We used continent-wide datasets of tree-ring chronologies and annual reproductive effort in Fagus sylvatica from 1901 to 2015 to characterise relationships between climate, reproduction and growth. Results highlight that variable allocation to reproduction is a key factor for growth in this species, and that high reproductive effort ('mast years') is associated with stem growth reduction. Additionally, high reproductive effort is associated with previous summer temperature, creating lagged climate effects on growth. Consequently, understanding growth variability in forest ecosystems requires the incorporation of reproduction, which can be highly variable. Our results suggest that future response of growth dynamics to climate change in this species will be strongly influenced by the response of reproduction.


Assuntos
Fagus , Árvores , Mudança Climática , Florestas , Reprodução , Árvores/crescimento & desenvolvimento
4.
New Phytol ; 215(2): 595-608, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28631320

RESUMO

Mast seeding is a crucial population process in many tree species, but its spatio-temporal patterns and drivers at the continental scale remain unknown . Using a large dataset (8000 masting observations across Europe for years 1950-2014) we analysed the spatial pattern of masting across the entire geographical range of European beech, how it is influenced by precipitation, temperature and drought, and the temporal and spatial stability of masting-weather correlations. Beech masting exhibited a general distance-dependent synchronicity and a pattern structured in three broad geographical groups consistent with continental climate regimes. Spearman's correlations and logistic regression revealed a general pattern of beech masting correlating negatively with temperature in the summer 2 yr before masting, and positively with summer temperature 1 yr before masting (i.e. 2T model). The temperature difference between the two previous summers (DeltaT model) was also a good predictor. Moving correlation analysis applied to the longest eight chronologies (74-114 yr) revealed stable correlations between temperature and masting, confirming consistency in weather cues across space and time. These results confirm widespread dependency of masting on temperature and lend robustness to the attempts to reconstruct and predict mast years using temperature data.


Assuntos
Fagus/fisiologia , Sementes/fisiologia , Clima , Secas , Europa (Continente) , Modelos Logísticos , Estações do Ano , Análise Espaço-Temporal , Temperatura , Tempo (Meteorologia)
5.
Ecology ; 98(5): 1473, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28241388

RESUMO

Tree masting is one of the most intensively studied ecological processes. It affects nutrient fluxes of trees, regeneration dynamics in forests, animal population densities, and ultimately influences ecosystem services. Despite a large volume of research focused on masting, its evolutionary ecology, spatial and temporal variability, and environmental drivers are still matter of debate. Understanding the proximate and ultimate causes of masting at broad spatial and temporal scales will enable us to predict tree reproductive strategies and their response to changing environment. Here we provide broad spatial (distribution range-wide) and temporal (century) masting data for the two main masting tree species in Europe, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst.). We collected masting data from a total of 359 sources through an extensive literature review and from unpublished surveys. The data set has a total of 1,747 series and 18,348 yearly observations from 28 countries and covering a time span of years 1677-2016 and 1791-2016 for beech and spruce, respectively. For each record, the following information is available: identification code; species; year of observation; proxy of masting (flower, pollen, fruit, seed, dendrochronological reconstructions); statistical data type (ordinal, continuous); data value; unit of measurement (only in case of continuous data); geographical location (country, Nomenclature of Units for Territorial Statistics NUTS-1 level, municipality, coordinates); first and last record year and related length; type of data source (field survey, peer reviewed scientific literature, gray literature, personal observation); source identification code; date when data were added to the database; comments. To provide a ready-to-use masting index we harmonized ordinal data into five classes. Furthermore, we computed an additional field where continuous series with length >4 yr where converted into a five classes ordinal index. To our knowledge, this is the most comprehensive published database on species-specific masting behavior. It is useful to study spatial and temporal patterns of masting and its proximate and ultimate causes, to refine studies based on tree-ring chronologies, to understand dynamics of animal species and pests vectored by these animals affecting human health, and it may serve as calibration-validation data for dynamic forest models.


Assuntos
Fagus/fisiologia , Picea/fisiologia , Europa (Continente) , Florestas , Noruega , Árvores
6.
Carbon Balance Manag ; 19(1): 15, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740689

RESUMO

BACKGROUND: Carbon (C) sink and stock are among the most important ecosystem services provided by forests in climate change mitigation policies. In this context, old-growth forests constitute an essential reference point for the development of close-to-nature silviculture, including C management techniques. Despite their small extent in Europe, temperate old-growth forests are assumed to be among the most prominent in terms of biomass and C stored. However, monitoring and reporting of C stocks is still poorly understood. To better understand the C stock amount and distribution in temperate old-growth forests, we estimated the C stock of two old-growth stands in the Dinaric Alps applying different assessment methods, including direct and indirect approaches (e.g., field measurements and allometric equations vs. IPCC standard methods). This paper presents the quantification and the distribution of C across the five main forest C pools (i.e., aboveground, belowground, deadwood, litter and soil) in the study areas and the differences between the applied methods. RESULTS: We report a very prominent C stock in both study areas (507 Mg C ha- 1), concentrated in a few large trees (36% of C in 5% of trees). Moreover, we found significant differences in C stock estimation between direct and indirect methods. Indeed, the latter tended to underestimate or overestimate depending on the pool considered. CONCLUSIONS: Comparison of our results with previous studies and data collected in European forests highlights the prominence of temperate forests, among which the Dinaric Alps old-growth forests are the largest. These findings provide an important benchmark for the development of future approaches to the management of the European temperate forests. However, further and deeper research on C stock and fluxes in old-growth stands is of prime importance to understand the potential and limits of the climate mitigation role of forests.

7.
Sci Total Environ ; 937: 173321, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38782287

RESUMO

The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.


Assuntos
Mudança Climática , Secas , Fagus , Fagus/crescimento & desenvolvimento , Fagus/fisiologia , Florestas , Árvores/crescimento & desenvolvimento , Árvores/fisiologia
8.
Sci Total Environ ; 890: 164281, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37216984

RESUMO

Wildfire regimes affected by global change have been the cause of major concern in recent years. Both direct prevention (e.g., fuel management planning) and land governance strategies (e.g., agroforestry development) can have an indirect regulatory effect on wildfires. Herein, we tested the hypothesis that active land planning and management in Italy have mitigated wildfire impacts in terms of loss of ecosystem services and forest cover, and burned wildland-urban interface, from 2007 to 2017. At the national scale, we assessed the effect size of major potential fire drivers such as climate, weather, flammability, socio-economic descriptors, land use changes, and proxies for land governance (e.g., European funds for rural development, investments in sustainable forest management, agro-pastoral activities), including potential interactions, on fire-related impacts via Random Forest modelling and Generalized Additive Mixed Model. Agro-forest districts (i.e., aggregations of neighbouring municipalities with homogeneous forest and agricultural characteristics) were used as spatial units of analysis. Our results confirm that territories with more active land governance show lower wildfire impacts, even under severe flammability and climatic conditions. This study supports current regional, national, and European strategies towards "fire resistant and resilient landscapes" by fostering agro-forestry, rural development, and nature conservation integrated policies.


Assuntos
Incêndios Florestais , Ecossistema , Itália , Tempo (Meteorologia) , Cidades
9.
Commun Biol ; 5(1): 163, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273334

RESUMO

The growth of past, present, and future forests was, is and will be affected by climate variability. This multifaceted relationship has been assessed in several regional studies, but spatially resolved, large-scale analyses are largely missing so far. Here we estimate recent changes in growth of 5800 beech trees (Fagus sylvatica L.) from 324 sites, representing the full geographic and climatic range of species. Future growth trends were predicted considering state-of-the-art climate scenarios. The validated models indicate growth declines across large region of the distribution in recent decades, and project severe future growth declines ranging from -20% to more than -50% by 2090, depending on the region and climate change scenario (i.e. CMIP6 SSP1-2.6 and SSP5-8.5). Forecasted forest productivity losses are most striking towards the southern distribution limit of Fagus sylvatica, in regions where persisting atmospheric high-pressure systems are expected to increase drought severity. The projected 21st century growth changes across Europe indicate serious ecological and economic consequences that require immediate forest adaptation.


Assuntos
Fagus , Mudança Climática , Secas , Florestas , Árvores
10.
Nat Commun ; 13(1): 2015, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440102

RESUMO

The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions.


Assuntos
Fagus , Movimentos do Ar , Carbono , Mudança Climática , Florestas
12.
Nat Commun ; 8(1): 2205, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263383

RESUMO

Climate teleconnections drive highly variable and synchronous seed production (masting) over large scales. Disentangling the effect of high-frequency (inter-annual variation) from low-frequency (decadal trends) components of climate oscillations will improve our understanding of masting as an ecosystem process. Using century-long observations on masting (the MASTREE database) and data on the Northern Atlantic Oscillation (NAO), we show that in the last 60 years both high-frequency summer and spring NAO, and low-frequency winter NAO components are highly correlated to continent-wide masting in European beech and Norway spruce. Relationships are weaker (non-stationary) in the early twentieth century. This finding improves our understanding on how climate variation affects large-scale synchronization of tree masting. Moreover, it supports the connection between proximate and ultimate causes of masting: indeed, large-scale features of atmospheric circulation coherently drive cues and resources for masting, as well as its evolutionary drivers, such as pollination efficiency, abundance of seed dispersers, and natural disturbance regimes.


Assuntos
Mudança Climática , Clima , Estações do Ano , Dispersão de Sementes , Árvores/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Ecossistema , Fagus/crescimento & desenvolvimento , Picea/crescimento & desenvolvimento , Polinização , Reprodução , Sementes/crescimento & desenvolvimento , Árvores/classificação
13.
Sci Total Environ ; 472: 778-88, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24334000

RESUMO

Regeneration of non fire-adapted conifers following crown fires on the European Alps is often delayed or unsuccessful. Fire may limit establishment by eliminating seed trees, altering soil properties, or modifying microsite and soil conditions via disturbance legacies. However, the effect of soil legacies on post-fire establishment has rarely been discussed. We analyzed the abundance of Scots pine regeneration in a 257 ha wildfire in an inner-alpine forest. Our aims were (1) to model fire intensity at the soil surface and topsoil heating along a gradient of increasing fire severities; (2) to assess the differences in soil properties along the fire severity gradient; (3) to model the effect of disturbance and soil legacies on the density of pine seedlings. We reconstructed fire behavior and soil heating with the First Order Fire Effects Model (FOFEM), tested the effect of fire severity on soils by nonparametric distributional tests, and modeled seedling density as a function of site, disturbance and soil legacies by fitting a GLM following a variable selection procedure. Topsoil heating differed markedly between the moderate and high severity fires, reaching temperatures high enough to strongly and permanently alter soil properties only in the latter. High fire severity resulted in decreased soil consistency and wet aggregate stability. Burned soils had lower organic matter and cations than those unburned. Pine seedlings favored low-fertility, eroded, and chemically poor sites. Establishment was facilitated by the presence of coarse woody debris, but hampered by increasing distance from the seed source. These results suggest that in dry, inner-alpine valleys, fire residuals and soil legacies interact in determining the success of Scots pine re-establishment. High severity fire can promote favorable soil conditions, but distance from the seed source and high evaporation rates of bare soils must be mitigated in order to ensure a successful restoration.


Assuntos
Incêndios/estatística & dados numéricos , Pinus sylvestris/crescimento & desenvolvimento , Poluentes do Solo/análise , Solo/química , Ecossistema , Meio Ambiente , Suíça
14.
PLoS One ; 7(11): e50755, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209823

RESUMO

Climate forcing is the major abiotic driver for forest ecosystem functioning and thus significantly affects the role of forests within the global carbon cycle and related ecosystem services. Annual radial increments of trees are probably the most valuable source of information to link tree growth and climate at long-term time scales, and have been used in a wide variety of investigations worldwide. However, especially in mountainous areas, tree-ring studies have focused on extreme environments where the climate sensitivity is perhaps greatest but are necessarily a biased representation of the forests within a region. We used tree-ring analyses to study two of the most important tree species growing in the Alps: Norway spruce (Picea abies) and silver fir (Abies alba). We developed tree-ring chronologies from 13 mesic mid-elevation sites (203 trees) and then compared them to monthly temperature and precipitation data for the period 1846-1995. Correlation functions, principal component analysis and fuzzy C-means clustering were applied to 1) assess the climate/growth relationships and their stationarity and consistency over time, and 2) extract common modes of variability in the species responses to mean and extreme climate variability. Our results highlight a clear, time-stable, and species-specific response to mean climate conditions. However, during the previous-year's growing season, which shows the strongest correlations, the primary difference between species is in their response to extreme events, not mean conditions. Mesic sites at mid-altitude are commonly underrepresented in tree-ring research; we showed that strong climatic controls of growth may exist even in those areas. Extreme climatic events may play a key role in defining the species-specific responses on climatic sensitivity and, with a global change perspective, specific divergent responses are likely to occur even where current conditions are less limited.


Assuntos
Abies/fisiologia , Altitude , Clima , Picea/fisiologia , Ecossistema , Noruega
15.
New Phytol ; 170(2): 301-10, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16608455

RESUMO

Intra-annual radial growth rates and durations in trees are reported to differ greatly in relation to species, site and environmental conditions. However, very similar dynamics of cambial activity and wood formation are observed in temperate and boreal zones. Here, we compared weekly xylem cell production and variation in stem circumference in the main northern hemisphere conifer species (genera Picea, Pinus, Abies and Larix) from 1996 to 2003. Dynamics of radial growth were modeled with a Gompertz function, defining the upper asymptote (A), x-axis placement (beta) and rate of change (kappa). A strong linear relationship was found between the constants beta and kappa for both types of analysis. The slope of the linear regression, which corresponds to the time at which maximum growth rate occurred, appeared to converge towards the summer solstice. The maximum growth rate occurred around the time of maximum day length, and not during the warmest period of the year as previously suggested. The achievements of photoperiod could act as a growth constraint or a limit after which the rate of tree-ring formation tends to decrease, thus allowing plants to safely complete secondary cell wall lignification before winter.


Assuntos
Clima Frio , Fotoperíodo , Caules de Planta/crescimento & desenvolvimento , Traqueófitas/crescimento & desenvolvimento , Canadá , Itália , Caules de Planta/anatomia & histologia , Análise de Regressão , Estações do Ano , Temperatura , Traqueófitas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA