Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Anesthesiology ; 133(5): 1060-1076, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32796202

RESUMO

BACKGROUND: Pulmonary atelectasis is frequent in clinical settings. Yet there is limited mechanistic understanding and substantial clinical and biologic controversy on its consequences. The authors hypothesize that atelectasis produces local transcriptomic changes related to immunity and alveolar-capillary barrier function conducive to lung injury and further exacerbated by systemic inflammation. METHODS: Female sheep underwent unilateral lung atelectasis using a left bronchial blocker and thoracotomy while the right lung was ventilated, with (n = 6) or without (n = 6) systemic lipopolysaccharide infusion. Computed tomography guided samples were harvested for NextGen RNA sequencing from atelectatic and aerated lung regions. The Wald test was used to detect differential gene expression as an absolute fold change greater than 1.5 and adjusted P value (Benjamini-Hochberg) less than 0.05. Functional analysis was performed by gene set enrichment analysis. RESULTS: Lipopolysaccharide-unexposed atelectatic versus aerated regions presented 2,363 differentially expressed genes. Lipopolysaccharide exposure induced 3,767 differentially expressed genes in atelectatic lungs but only 1,197 genes in aerated lungs relative to the corresponding lipopolysaccharide-unexposed tissues. Gene set enrichment for immune response in atelectasis versus aerated tissues yielded negative normalized enrichment scores without lipopolysaccharide (less than -1.23, adjusted P value less than 0.05) but positive scores with lipopolysaccharide (greater than 1.33, adjusted P value less than 0.05). Leukocyte-related processes (e.g., leukocyte migration, activation, and mediated immunity) were enhanced in lipopolysaccharide-exposed atelectasis partly through interferon-stimulated genes. Furthermore, atelectasis was associated with negatively enriched gene sets involving alveolar-capillary barrier function irrespective of lipopolysaccharide (normalized enrichment scores less than -1.35, adjusted P value less than 0.05). Yes-associated protein signaling was dysregulated with lower nuclear distribution in atelectatic versus aerated lung (lipopolysaccharide-unexposed: 10.0 ± 4.2 versus 13.4 ± 4.2 arbitrary units, lipopolysaccharide-exposed: 8.1 ± 2.0 versus 11.3 ± 2.4 arbitrary units, effect of lung aeration, P = 0.003). CONCLUSIONS: Atelectasis dysregulates the local pulmonary transcriptome with negatively enriched immune response and alveolar-capillary barrier function. Systemic lipopolysaccharide converts the transcriptomic immune response into positive enrichment but does not affect local barrier function transcriptomics. Interferon-stimulated genes and Yes-associated protein might be novel candidate targets for atelectasis-associated injury.


Assuntos
Imunidade Celular/genética , Imunidade Celular/imunologia , Atelectasia Pulmonar/genética , Atelectasia Pulmonar/imunologia , Transcriptoma/genética , Animais , Feminino , Medidas de Volume Pulmonar/métodos , Atelectasia Pulmonar/diagnóstico por imagem , Ovinos
2.
J Clin Monit Comput ; 34(6): 1265-1274, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31872310

RESUMO

To evaluate a compact and easily interpretable 4-parameter model describing the shape of the volumetric capnogram, and the resulting estimates of anatomical dead space (VDAW) and Phase III (alveolar plateau) slope (SIII). Data from of 8 mildly-endotoxemic pre-acute respiratory distress syndrome sheep were fitted to the proposed 4-parameter model (4p) and a previously established 7-parameter model (7p). Root mean square error (RMSE) and Akaike information criterion (AIC), as well as VDAW and SIII derived from each model were compared. Confidence intervals for model's parameters, VDAW and SIII were estimated with a jackknife approach. RMSE values were similar (4p: 1.13 ± 0.01 mmHg vs 7p: 1.14 ± 0.01 mmHg) in the 791 breath cycles tested. However, the 7p overfitted the curve and had worse AIC in more than 50% of the cycles (p < 0.001). The large number of degrees of freedom also resulted in larger between-animal range of confidence intervals for 7p (VDAW: from 6.1 10-12 to 34 ml, SIII: from 9.53 10-7 to 1.80 mmHg/ml) as compared to 4p (VDAW: from 0.019 to 0.15 ml, SIII: from 3.9 10-4 to 0.011 mmHg/ml). Mean differences between VDAW (2.1 ± 0.04 ml) and SIII (0.047 ± 0.004 mmHg/ml) from 7 and 4p were significant (p < 0.001), but within the observed cycle-by-cycle variability. The proposed 4-parameter model of the volumetric capnogram improves data fitting and estimation of VDAW and SIII as compared to the 7-parameter model of reference. These advantages support the use of the 4-parameter model in future research and clinical applications.


Assuntos
Dióxido de Carbono , Espaço Morto Respiratório , Animais , Ovinos
3.
Am J Respir Crit Care Med ; 198(7): 891-902, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29787304

RESUMO

RATIONALE: The contribution of aeration heterogeneity to lung injury during early mechanical ventilation of uninjured lungs is unknown. OBJECTIVES: To test the hypotheses that a strategy consistent with clinical practice does not protect from worsening in lung strains during the first 24 hours of ventilation of initially normal lungs exposed to mild systemic endotoxemia in supine versus prone position, and that local neutrophilic inflammation is associated with local strain and blood volume at global strains below a proposed injurious threshold. METHODS: Voxel-level aeration and tidal strain were assessed by computed tomography in sheep ventilated with low Vt and positive end-expiratory pressure while receiving intravenous endotoxin. Regional inflammation and blood volume were estimated from 2-deoxy-2-[(18)F]fluoro-d-glucose (18F-FDG) positron emission tomography. MEASUREMENTS AND MAIN RESULTS: Spatial heterogeneity of aeration and strain increased only in supine lungs (P < 0.001), with higher strains and atelectasis than prone at 24 hours. Absolute strains were lower than those considered globally injurious. Strains redistributed to higher aeration areas as lung injury progressed in supine lungs. At 24 hours, tissue-normalized 18F-FDG uptake increased more in atelectatic and moderately high-aeration regions (>70%) than in normally aerated regions (P < 0.01), with differential mechanistically relevant regional gene expression. 18F-FDG phosphorylation rate was associated with strain and blood volume. Imaging findings were confirmed in ventilated patients with sepsis. CONCLUSIONS: Mechanical ventilation consistent with clinical practice did not generate excessive regional strain in heterogeneously aerated supine lungs. However, it allowed worsening of spatial strain distribution in these lungs, associated with increased inflammation. Our results support the implementation of early aeration homogenization in normal lungs.


Assuntos
Lesão Pulmonar Aguda/patologia , Atelectasia Pulmonar/etiologia , Respiração Artificial/efeitos adversos , Síndrome do Desconforto Respiratório/etiologia , Lesão Pulmonar Aguda/diagnóstico por imagem , Lesão Pulmonar Aguda/etiologia , Análise de Variância , Animais , Biópsia por Agulha , Gasometria , Modelos Animais de Doenças , Endotoxemia/etiologia , Endotoxemia/fisiopatologia , Endotoxinas/farmacologia , Feminino , Fluordesoxiglucose F18 , Humanos , Imuno-Histoquímica , Infusões Intravenosas , Modelos Lineares , Análise Multivariada , Tomografia por Emissão de Pósitrons/métodos , Atelectasia Pulmonar/diagnóstico por imagem , Distribuição Aleatória , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/patologia , Testes de Função Respiratória , Fatores de Risco , Ovinos , Volume de Ventilação Pulmonar/fisiologia , Fatores de Tempo , Tomografia Computadorizada por Raios X/métodos
5.
Sci Rep ; 14(1): 5832, 2024 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461172

RESUMO

Regional pulmonary perfusion (Q) has been investigated using blood volume (Fb) imaging as an easier-to-measure surrogate. However, it is unclear if changing pulmonary conditions could affect their relationship. We hypothesized that vascular changes in early acute respiratory distress syndrome (ARDS) affect Q and Fb differently. Five sheep were anesthetized and received lung protective mechanical ventilation for 20 h while endotoxin was continuously infused. Using dynamic 18F-FDG and 13NN Positron Emission Tomography (PET), regional Fb and Q were analysed in 30 regions of interest (ROIs) and normalized by tissue content (Fbn and Qn, respectively). After 20 h, the lung injury showed characteristics of early ARDS, including gas exchange and lung mechanics. PET images of Fbn and Qn showed substantial differences between baseline and lung injury. Lung injury caused a significant change in the Fbn-Qn relationship compared to baseline (p < 0.001). The best models at baseline and lung injury were Fbn = 0.32 + 0.690Qn and Fbn = 1.684Qn-0.538Qn2, respectively. Endotoxine-associated early ARDS changed the relationship between Fb and Q, shifting from linear to curvilinear. Effects of endotoxin exposure on the vasoactive blood flow regulation were most likely the key factor for this change limiting the quantitative accuracy of Fb imaging as a surrogate for regional Q.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Animais , Ovinos , Tomografia Computadorizada por Raios X , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Perfusão , Volume Sanguíneo , Endotoxinas/toxicidade
6.
J Appl Physiol (1985) ; 135(2): 239-250, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37289955

RESUMO

Lung perfusion magnitude and distribution are essential for oxygenation and, potentially, lung inflammation and protection during acute respiratory distress syndrome (ARDS). Yet, perfusion patterns and their relationship to inflammation are unknown pre-ARDS. We aimed to assess perfusion/density ratios and spatial perfusion-density distributions and associate these to lung inflammation, during early lung injury in large animals at different physiological conditions caused by different systemic inflammation and positive end-expiratory pressure (PEEP) levels. Sheep were protectively ventilated (16-24 h) and imaged for lung density, pulmonary capillary perfusion (13Nitrogen-saline), and inflammation (18F-fluorodeoxyglucose) using positron emission and computed tomography. We studied four conditions: permissive atelectasis (PEEP = 0 cmH2O); and ARDSNet low-stretch PEEP-setting strategy with supine moderate or mild endotoxemia, and prone mild endotoxemia. Perfusion/density heterogeneity increased pre-ARDS in all groups. Perfusion redistribution to density depended on ventilation strategy and endotoxemia level, producing more atelectasis in mild than moderate endotoxemia (P = 0.010) with the oxygenation-based PEEP-setting strategy. The spatial distribution of 18F-fluorodeoxyglucose uptake was related to local Q/D (P < 0.001 for Q/D group interaction). Moderate endotoxemia yielded markedly low/zero perfusion in normal-low density lung, with 13Nitrogen-saline perfusion indicating nondependent capillary obliteration. Prone animals' perfusion was remarkably homogeneously distributed with density. Lung perfusion redistributes heterogeneously to density during pre-ARDS protective ventilation in animals. This is associated with increased inflammation, nondependent capillary obliteration, and lung derecruitment susceptibility depending on endotoxemia level and ventilation strategy.NEW & NOTEWORTHY Perfusion redistribution does not follow lung density redistribution in the first 16-24 h of systemic endotoxemia and protective tidal volume mechanical ventilation. The same oxygenation-based positive end-expiratory pressure (PEEP)-setting strategy can lead at different endotoxemia levels to different perfusion redistributions, PEEP values, and lung aerations, worsening lung biomechanical conditions. During early acute lung injury, regional perfusion-to-tissue density ratio is associated with increased neutrophilic inflammation, and susceptibility to nondependent capillary occlusion and lung derecruitment, potentially marking and/or driving lung injury.


Assuntos
Lesão Pulmonar Aguda , Endotoxemia , Pneumonia , Atelectasia Pulmonar , Síndrome do Desconforto Respiratório , Animais , Ovinos , Fluordesoxiglucose F18 , Pulmão/irrigação sanguínea , Inflamação , Perfusão , Nitrogênio
7.
Front Vet Sci ; 9: 865673, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601404

RESUMO

Objectives: To compare the effects of four levels of end-expiratory pressure [zero (ZEEP) and three levels of positive end-expiratory pressure (PEEP)] on the cardiovascular system and gas exchange of cats anesthetized with isoflurane and mechanically ventilated for 3 h with a tidal volume of 10 ml/kg. Study Design: Prospective, randomized, controlled trial. Animals: Six healthy male neutered purpose-bred cats. Methods: Anesthesia was induced with isoflurane and maintained at 1.3 minimum alveolar concentration. PEEP of maximal respiratory compliance (PEEPmaxCrs) was identified in a decremental PEEP titration, and cats were randomly ventilated for 3 h with one of the following end-expiratory pressures: ZEEP, PEEPmaxCrs minus 2 cmH2O (PEEPmaxCrs-2), PEEPmaxCrs, and PEEPmaxCrs plus 2 cmH2O (PEEPmaxCrs+2). Cardiovascular and gas exchange variables were recorded at 5, 30, 60, 120, and 180 min (T5 to T180, respectively) of ventilation and compared between and within ventilation treatments with mixed-model ANOVA followed by Dunnet's and Tukey's tests (normal distribution) or Friedman test followed by the Dunn's test (non-normal distribution). Significance to reject the null hypothesis was considered p < 0.05. Results: Mean arterial pressure (MAP-mmHg) was lower in PEEPmaxCrs+2 [63 (49-69); median (range)] when compared to ZEEP [71 (67-113)] at T5 and stroke index (ml/beat/kg) was lower in PEEPmaxCrs+2 (0.70 ± 0.20; mean ± SD) than in ZEEP (0.90 ± 0.20) at T60. Cardiac index, oxygen delivery index (DO2I), systemic vascular resistance index, and shunt fraction were not significantly different between treatments. The ratio between arterial partial pressure and inspired concentration of oxygen (PaO2/FIO2) was lower in ZEEP than in the PEEP treatments at various time points. At T180, DO2I was higher when compared to T5 in PEEPmaxCrs. Dopamine was required to maintain MAP higher than 60 mmHg in one cat during PEEPmaxCrs and in three cats during PEEPmaxCrs+2. Conclusion: In cats anesthetized with isoflurane and mechanically ventilated for 3 h, all levels of PEEP mildly improved gas exchange with no significant difference in DO2I when compared to ZEEP. The PEEP levels higher than PEEPmaxCrs-2 caused more cardiovascular depression, and dopamine was an effective treatment. A temporal increase in DO2I was observed in the cats ventilated with PEEPmaxCrs. The effects of these levels of PEEP on respiratory mechanics, ventilation-induced lung injury, as well as in obese and critically ill cats deserve future investigation for a better understanding of the clinical use of PEEP in this species.

8.
Biomed Eng Online ; 9: 36, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20673339

RESUMO

BACKGROUND: The positive end-expiratory pressure (PEEP) for the mechanical ventilation of small animals is frequently obtained with water seals or by using ventilators developed for human use. An alternative mechanism is the use of an on-off expiratory valve closing at the moment when the alveolar pressure is equal to the target PEEP. In this paper, a novel PEEP controller (PEEP-new) and the PEEP system of a commercial small-animal ventilator, both based on switching an on-off valve, are evaluated. METHODS: The proposed PEEP controller is a discrete integrator monitoring the error between the target PEEP and the airways opening pressure prior to the onset of an inspiratory cycle. In vitro as well as in vivo experiments with rats were carried out and the PEEP accuracy, settling time and under/overshoot were considered as a measure of performance. RESULTS: The commercial PEEP controller did not pass the tests since it ignores the airways resistive pressure drop, resulting in a PEEP 5 cmH2O greater than the target in most conditions. The PEEP-new presented steady-state errors smaller than 0.5 cmH2O, with settling times below 10 s and under/overshoot smaller than 2 cmH2O. CONCLUSION: The PEEP-new presented acceptable performance, considering accuracy and temporal response. This novel PEEP generator may prove useful in many applications for small animal ventilators.


Assuntos
Tamanho Corporal , Respiração com Pressão Positiva/instrumentação , Ventiladores Mecânicos , Animais , Expiração , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Fatores de Tempo
9.
Front Physiol ; 9: 920, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057557

RESUMO

Background: Laparoscopic surgery with pneumoperitoneum increases respiratory system elastance due to the augmented intra-abdominal pressure. We aim to evaluate to which extent positive end-expiratory pressure (PEEP) is able to counteract abdominal hypertension preventing progressive lung collapse and how rib cage elastance influences PEEP effect. Methods: Forty-four Wistar rats were mechanically ventilated and randomly assigned into three groups: control (CTRL), pneumoperitoneum (PPT) and pneumoperitoneum with restricted rib cage (PPT-RC). A pressure-volume (PV) curve followed by a recruitment maneuver and a decremental PEEP trial were performed in all groups. Thereafter, animals were ventilated using PEEP of 3 and 8 cmH2O divided into two subgroups used to evaluate respiratory mechanics or computed tomography (CT) images. In 26 rats, we compared respiratory system elastance (Ers) at the two PEEP levels. In 18 animals, CT images were acquired to calculate total lung volume (TLV), total volume and air volume in six anatomically delimited regions of interest (three along the cephalo-caudal and three along the ventro-dorsal axes). Results: PEEP of minimal Ers was similar in CTRL and PPT groups (3.8 ± 0.45 and 3.5 ± 3.89 cmH2O, respectively) and differed from PPT-RC group (9.8 ± 0.63 cmH2O). Chest restriction determined a right- and downward shift of the PV curve, increased Ers and diminished TLV and lung aeration. Increasing PEEP augmented TLV in CTRL group (11.8 ± 1.3 to 13.6 ± 2 ml, p < 0.05), and relative air content in the apex of PPT group (3.5 ± 1.4 to 4.6 ± 1.4% TLV, p < 0.03) and in the middle zones in PPT-RC group (21.4 ± 1.9 to 25.3 ± 2.1% TLV cephalo-caudally and 18.1 ± 4.3 to 22.0 ± 3.3% TLV ventro-dorsally, p < 0.005). Conclusion: Regional lung recruitment potential during pneumoperitoneum depends on rib cage elastance, reinforcing the concept of PEEP individualization according to the patient's condition.

10.
Soc Cogn Affect Neurosci ; 12(6): 984-992, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28402534

RESUMO

Emotional states can guide the actions and decisions we make in our everyday life through their influence on cognitive processes such as working memory (WM). We investigated the long-lasting interference that an unpleasant emotional state had on goal-relevant WM representations from an electrophysiological perspective. Participants performed a change detection task that was preceded by the presentation of unpleasant or neutral task-irrelevant pictures in a blocked fashion. We focused on the contralateral delay activity (CDA), an event-related potential that is sensitive to the number of task-relevant items stored in WM. We found that the asymptotic limit for the CDA amplitude was lower during the unpleasant emotional state than during the neutral one; that is, an emotional state was capable of reducing how many task-relevant items the participants could hold in WM. Furthermore, both the individuals who experienced more intrusive thoughts and those who were dispositionally anxious were more susceptible to the influence of the emotional state. We provide evidence that an unpleasant emotional state diminished visual WM for task-relevant items, particularly in susceptible individuals. These results open new avenues to uncover the emotional-cognitive processing that underlies maladaptive WM representations and the role of such processing in the development of mental illness.


Assuntos
Emoções/fisiologia , Memória de Curto Prazo/fisiologia , Ansiedade/psicologia , Eletroencefalografia , Fenômenos Eletrofisiológicos , Potenciais Evocados , Feminino , Humanos , Masculino , Estimulação Luminosa , Substância Branca/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA