Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Hum Mutat ; 41(6): 1123-1130, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32227657

RESUMO

MicroRNAs (miRNA) are short noncoding RNAs that can repress the expression of protein-coding messenger RNAs (mRNAs) by binding to the 3'-untranslated region (UTR) of the target. Genetic mutations such as single nucleotide variants (SNVs) in the 3'-UTR of the mRNAs can disrupt miRNA regulation. In this study, we presented dbMTS, a database for miRNA target site (MTS) SNVs and their functional annotations. This database can help studies easily identify putative SNVs that affect miRNA targeting and facilitate the prioritization of their functional importance. dbMTS is freely available for academic use at http://database.liulab.science/dbMTS as a web service or a downloadable attached database of dbNSFP.


Assuntos
Bases de Dados Genéticas , MicroRNAs , Polimorfismo de Nucleotídeo Único , Regiões 3' não Traduzidas , Biologia Computacional , Humanos , Internet , MicroRNAs/genética , Software
2.
ICS ; 20222022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35943281

RESUMO

Due to the high level of parallelism, there are unique challenges in developing system software on massively parallel hardware such as GPUs. One such challenge is designing a dynamic memory allocator whose task is to allocate memory chunks to requesting threads at runtime. State-of-the-art GPU memory allocators maintain a global data structure holding metadata to facilitate allocation/deallocation. However, the centralized data structure can easily become a bottleneck in a massively parallel system. In this paper, we present a novel approach for designing dynamic memory allocation without a centralized data structure. The core idea is to let threads follow a random search procedure to locate free pages. Then we further extend to more advanced designs and algorithms that can achieve an order of magnitude improvement over the basic idea. We present mathematical proofs to demonstrate that (1) the basic random search design achieves asymptotically lower latency than the traditional queue-based design and (2) the advanced designs achieve significant improvement over the basic idea. Extensive experiments show consistency to our mathematical models and demonstrate that our solutions can achieve up to two orders of magnitude improvement in latency over the best-known existing solutions.

3.
Genome Med ; 12(1): 103, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33261662

RESUMO

Whole exome sequencing has been increasingly used in human disease studies. Prioritization based on appropriate functional annotations has been used as an indispensable step to select candidate variants. Here we present the latest updates to dbNSFP (version 4.1), a database designed to facilitate this step by providing deleteriousness prediction and functional annotation for all potential nonsynonymous and splice-site SNVs (a total of 84,013,093) in the human genome. The current version compiled 36 deleteriousness prediction scores, including 12 transcript-specific scores, and other variant and gene-level functional annotations. The database is available at http://database.liulab.science/dbNSFP with a downloadable version and a web-service.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genoma Humano , Anotação de Sequência Molecular , Biologia Computacional , Humanos , Mutação , Software , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA