Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Lett ; 604: 217263, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39313128

RESUMO

Approximately 50 % of poor prognosis neuroblastomas arise due to MYCN over-expression. We previously demonstrated that MYCN and PRMT5 proteins interact and PRMT5 knockdown led to apoptosis of MYCN-amplified (MNA) neuroblastoma. Here we evaluate the highly selective first-in-class PRMT5 inhibitor GSK3203591 and its in vivo analogue GSK3326593 as targeted therapeutics for MNA neuroblastoma. Cell-line analyses show MYCN-dependent growth inhibition and apoptosis, with approximately 200-fold greater sensitivity of MNA neuroblastoma lines. RNA sequencing of three MNA neuroblastoma lines treated with GSK3203591 reveal deregulated MYCN transcriptional programmes and altered mRNA splicing, converging on key regulatory pathways such as DNA damage response, epitranscriptomics and cellular metabolism. Stable isotope labelling experiments in the same cell lines demonstrate that glutamine metabolism is impeded following GSK3203591 treatment, linking with disruption of the MLX/Mondo nutrient sensors via intron retention of MLX mRNA. Interestingly, glutaminase (GLS) protein decreases after GSK3203591 treatment despite unchanged transcript levels. We demonstrate that the RNA methyltransferase METTL3 and cognate reader YTHDF3 proteins are lowered following their mRNAs undergoing GSK3203591-induced splicing alterations, indicating epitranscriptomic regulation of GLS; accordingly, we observe decreases of GLS mRNA m6A methylation following GSK3203591 treatment, and decreased GLS protein following YTHDF3 knockdown. In vivo efficacy of GSK3326593 is confirmed by increased survival of Th-MYCN mice, with drug treatment triggering splicing events and protein decreases consistent with in vitro data. Together our study demonstrates the PRMT5-dependent spliceosomal vulnerability of MNA neuroblastoma and identifies the epitranscriptome and glutamine metabolism as critical determinants of this sensitivity.


Assuntos
Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Proteína-Arginina N-Metiltransferases , Spliceossomos , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Linhagem Celular Tumoral , Spliceossomos/metabolismo , Spliceossomos/genética , Apoptose , Regulação Neoplásica da Expressão Gênica , Epigênese Genética , Animais , Transcriptoma , Metabolômica/métodos , Glutaminase/genética , Glutaminase/metabolismo , Camundongos , Splicing de RNA , Proliferação de Células
2.
J Cyst Fibros ; 17(5): 607-615, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29233471

RESUMO

BACKGROUND: Cystic Fibrosis (CF) lung disease is characterised by dysregulated ion transport that promotes chronic bacterial infection and inflammation. The impact of the specialised pro-resolution mediator resolvin D1 (RvD1) on airway surface liquid (ASL) dynamics and innate defence had not yet been investigated in CF airways. METHODS: Ex vivo studies were performed on primary cultures of alveolar macrophages and bronchial epithelial cells from children with CF and in human bronchial epithelial cell lines; in vivo studies were performed in homozygous F508del-CFTR mice treated with vehicle control or RvD1 (1-100nM). RESULTS: RvD1 increased the CF ASL height in human bronchial epithelium and restored the nasal trans-epithelial potential difference in CF mice by decreasing the amiloride-sensitive Na+ absorption and stimulating CFTR-independent Cl- secretion. RvD1 decreased TNFα induced IL-8 secretion and enhanced the phagocytic and bacterial killing capacity of human CF alveolar macrophages. CONCLUSION: RvD1 resolves CF airway pathogenesis and has therapeutic potential in CF lung disease.


Assuntos
Fibrose Cística/tratamento farmacológico , Fibrose Cística/imunologia , Ácidos Docosa-Hexaenoicos/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Criança , Células Epiteliais/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Transporte de Íons/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Camundongos
3.
J Exp Clin Cancer Res ; 37(1): 281, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30477537

RESUMO

BACKGROUND: Kindlin-1, - 2, and - 3 are the three members of the Kindlin family. They are best known as regulators of integrin functions, contributing to fundamental biological processes such as cell survival, adhesion and migration. Their deregulation leads to diverse pathologies including a broad range of cancers in which both, tumor-promoting and tumor-inhibiting functions have been described. METHODS: To better characterize Kindlins implication in breast cancer, in vitro experiments were performed in a series of cancer cell lines. We first assessed their expression profiles and subcellular distributions. Then, their involvement in breast cancer cell morphology, migration and invasion was verified by examining phenotypic changes induced by the depletion of either isoforms using RNA interference. An expression study was performed in a series of breast cancer patient derived xenografts (n = 58) to define the epithelial and stromal contribution of each Kindlin. Finally, we analyzed the expression levels of the three Kindlins in a large series of human breast tumors, at the RNA (n = 438) and protein (n = 129) levels and we evaluated their correlation with the clinical outcome. RESULTS: We determined that Kindlin-1 and Kindlin-2, but not Kindlin-3, were expressed in breast tumor cells. We uncovered the compensatory roles of Kindlin-1 and -2 in focal adhesion dynamics and cell motility. Remarkably, Kindlin-2 had a predominant effect on cell spreading and Kindlin-1 on cell invasion. In line with these experimental observations, Kindlin-1 overexpression was associated with a worse patients' outcome. Notably, Kindlin-3, expressed by tumor infiltrating leukocytes, also correlated with a poor prognosis of breast cancer patients. CONCLUSION: This study demonstrates that each one of the Kindlin family members has a different expression profile emphasizing their redundant and complementary roles in breast tumor cells. We highlight the specific link between Kindlin-1 and breast cancer progression. In addition, Kindlin-3 overexpression in the tumor microenvironment is associated with more aggressive breast tumors. These results suggest that Kindlins play distinctive roles in breast cancer. Kindlins may be useful in identifying breast cancer patients with a worst prognosis and may offer new avenues for therapeutic intervention against cancer progression.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Neoplasias/biossíntese , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Células MCF-7 , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Prognóstico , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA