Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33372153

RESUMO

Plants spend most of their life oscillating around 1-3 Hz due to the effect of the wind. Therefore, stems and foliage experience repetitive mechanical stresses through these passive movements. However, the mechanism of the cellular perception and transduction of such recurring mechanical signals remains an open question. Multimeric protein complexes forming mechanosensitive (MS) channels embedded in the membrane provide an efficient system to rapidly convert mechanical tension into an electrical signal. So far, studies have mostly focused on nonoscillatory stretching of these channels. Here, we show that the plasma-membrane MS channel MscS-LIKE 10 (MSL10) from the model plant Arabidopsis thaliana responds to pulsed membrane stretching with rapid activation and relaxation kinetics in the range of 1 s. Under sinusoidal membrane stretching MSL10 presents a greater activity than under static stimulation. We observed this amplification mostly in the range of 0.3-3 Hz. Above these frequencies the channel activity is very close to that under static conditions. With a localization in aerial organs naturally submitted to wind-driven oscillations, our results suggest that the MS channel MSL10, and by extension MS channels sharing similar properties, represents a molecular component allowing the perception of oscillatory mechanical stimulations by plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Membrana Celular/fisiologia , Canais Iônicos/metabolismo , Transporte de Íons , Mecanorreceptores/metabolismo , Proteínas de Membrana/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais
2.
New Phytol ; 233(6): 2354-2379, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34890051

RESUMO

Shoot morphogenetic plasticity is crucial to the adaptation of plants to their fluctuating environments. Major insights into shoot morphogenesis have been compiled studying meristems, especially the shoot apical meristem (SAM), through a methodological effort in multiscale systems biology and biophysics. However, morphogenesis at the SAM is robust to environmental changes. Plasticity emerges later on during post-SAM development. The purpose of this review is to show that multiscale systems biology and biophysics is insightful for the shaping of the whole plant as well. More specifically, we review the shaping of axes and crowns through tropisms and elasticity, combining the recent advances in morphogenetic control using physical cues and by genes. We focus mostly on land angiosperms, but with growth habits ranging from small herbs to big trees. We show that generic (universal) morphogenetic processes have been identified, revealing feedforward and feedback effects of global shape on the local morphogenetic process. In parallel, major advances have been made in the analysis of the major genes involved in shaping axes and crowns, revealing conserved genic networks among angiosperms. Then, we show that these two approaches are now starting to converge, revealing exciting perspectives.


Assuntos
Meristema , Tropismo , Elasticidade , Meristema/genética , Morfogênese , Brotos de Planta
3.
New Phytol ; 234(2): 412-421, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35075689

RESUMO

Damage can be signalled by extracellular ATP (eATP) using plasma membrane (PM) receptors to effect cytosolic free calcium ion ([Ca2+ ]cyt ) increase as a second messenger. The downstream PM Ca2+ channels remain enigmatic. Here, the Arabidopsis thaliana Ca2+ channel subunit CYCLIC NUCLEOTIDE-GATED CHANNEL2 (CNGC2) was identified as a critical component linking eATP receptors to downstream [Ca2+ ]cyt signalling in roots. Extracellular ATP-induced changes in single epidermal cell PM voltage and conductance were measured electrophysiologically, changes in root [Ca2+ ]cyt were measured with aequorin, and root transcriptional changes were determined by quantitative real-time PCR. Two cngc2 loss-of-function mutants were used: cngc2-3 and defence not death1 (which expresses cytosolic aequorin). Extracellular ATP-induced transient depolarization of Arabidopsis root elongation zone epidermal PM voltage was Ca2+ dependent, requiring CNGC2 but not CNGC4 (its channel co-subunit in immunity signalling). Activation of PM Ca2+ influx currents also required CNGC2. The eATP-induced [Ca2+ ]cyt increase and transcriptional response in cngc2 roots were significantly impaired. CYCLIC NUCLEOTIDE-GATED CHANNEL2 is required for eATP-induced epidermal Ca2+ influx, causing depolarization leading to [Ca2+ ]cyt increase and damage-related transcriptional response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Trifosfato de Adenosina/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/farmacologia , Células Epidérmicas , Epiderme/metabolismo , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/farmacologia , Transdução de Sinais
4.
J Exp Bot ; 72(5): 1727-1737, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247732

RESUMO

In conifers, xylogenesis during a growing season produces a very characteristic tree-ring structure: large, thin-walled earlywood cells followed by narrow, thick-walled latewood cells. Although many factors influence the dynamics of differentiation and the final dimensions of xylem cells, the associated patterns of variation remain very stable from one year to the next. While radial growth is characterized by an S-shaped curve, the widths of xylem differentiation zones exhibit characteristic skewed bell-shaped curves. These elements suggest a strong internal control of xylogenesis. It has long been hypothesized that much of this regulation relies on a morphogenetic gradient of auxin. However, recent modelling studies have shown that while this hypothesis could account for the dynamics of stem radial growth and the zonation of the developing xylem, it failed to reproduce the characteristic tree-ring structure. Here, we investigated the hypothesis of regulation by a crosstalk between auxin and a second biochemical signal, by using computational morphodynamics. We found that, in conifers, such a crosstalk is sufficient to simulate the characteristic features of wood formation dynamics, as well as the resulting tree-ring structure. In this model, auxin controls cell enlargement rates while another signal (e.g. cytokinin, tracheary element differentiation inhibitory factor) drives cell division and auxin polar transport.


Assuntos
Traqueófitas , Madeira , Diferenciação Celular , Estações do Ano , Xilema
5.
Proc Natl Acad Sci U S A ; 115(20): 5123-5128, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712863

RESUMO

Plants are able to sense and respond to minute tilt from the vertical direction of the gravity, which is key to maintain their upright posture during development. However, gravisensing in plants relies on a peculiar sensor made of microsize starch-filled grains (statoliths) that sediment and form tiny granular piles at the bottom of the cell. How such a sensor can detect inclination is unclear, as granular materials like sand are known to display flow threshold and finite avalanche angle due to friction and interparticle jamming. Here, we address this issue by combining direct visualization of statolith avalanches in plant cells and experiments in biomimetic cells made of microfluidic cavities filled with a suspension of heavy Brownian particles. We show that, despite their granular nature, statoliths move and respond to the weakest angle, as a liquid clinometer would do. Comparison between the biological and biomimetic systems reveals that this liquid-like behavior comes from the cell activity, which agitates statoliths with an apparent temperature one order of magnitude larger than actual temperature. Our results shed light on the key role of active fluctuations of statoliths for explaining the remarkable sensitivity of plants to inclination. Our study also provides support to a recent scenario of gravity perception in plants, by bridging the active granular rheology of statoliths at the microscopic level to the macroscopic gravitropic response of the plant.


Assuntos
Biomimética , Gravitropismo , Sensação Gravitacional/fisiologia , Células Vegetais/fisiologia , Fenômenos Fisiológicos Vegetais , Triticum/crescimento & desenvolvimento , Soluções , Triticum/fisiologia
6.
Ann Bot ; 124(7): 1227-1242, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31904093

RESUMO

BACKGROUND AND AIMS: Extracellular ATP governs a range of plant functions, including cell viability, adaptation and cross-kingdom interactions. Key functions of extracellular ATP in leaves and roots may involve an increase in cytosolic free calcium as a second messenger ('calcium signature'). The main aim here was to determine to what extent leaf and root calcium responses require the DORN1/P2K1 extracellular ATP receptor in Arabidopsis thaliana. The second aim was to test whether extracellular ATP can generate a calcium wave in the root. METHODS: Leaf and root responses to extracellular ATP were reviewed for their possible links to calcium signalling and DORN1/P2K1. Leaves and roots of wild type and dorn1 plants were tested for cytosolic calcium increase in response to ATP, using aequorin. The spatial abundance of DORN1/P2K1 in the root was estimated using green fluorescent protein. Wild type roots expressing GCaMP3 were used to determine the spatial variation of cytosolic calcium increase in response to extracellular ATP. KEY RESULTS: Leaf and root ATP-induced calcium signatures differed markedly. The leaf signature was only partially dependent on DORN1/P2K1, while the root signature was fully dependent. The distribution of DORN1/P2K1 in the root supports a key role in the generation of the apical calcium signature. Root apical and sub-apical calcium signatures may operate independently of each other but an apical calcium increase can drive a sub-apical increase, consistent with a calcium wave. CONCLUSION: DORN1 could underpin several calcium-related responses but it may not be the only receptor for extracellular ATP in Arabidopsis. The root has the capacity for a calcium wave, triggered by extracellular ATP at the apex.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Trifosfato de Adenosina , Cálcio , Sinalização do Cálcio , Raízes de Plantas
7.
J Exp Bot ; 70(6): 1955-1967, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30916341

RESUMO

Gravity is a major abiotic cue for plant growth. However, little is known about the responses of plants to various patterns of gravi-stimulation, with apparent contradictions being observed between the dose-like responses recorded under transient stimuli in microgravity environments and the responses under steady-state inclinations recorded on earth. Of particular importance is how the gravitropic response of an organ is affected by the temporal dynamics of downstream processes in the signalling pathway, such as statolith motion in statocytes or the redistribution of auxin transporters. Here, we used a combination of experiments on the whole-plant scale and live-cell imaging techniques on wheat coleoptiles in centrifuge devices to investigate both the kinematics of shoot-bending induced by transient inclination, and the motion of the statoliths in response to cell inclination. Unlike previous observations in microgravity, the response of shoots to transient inclinations appears to be independent of the level of gravity, with a response time much longer than the duration of statolith sedimentation. This reveals the existence of a memory process in the gravitropic signalling pathway, independent of statolith dynamics. By combining this memory process with statolith motion, a mathematical model is built that unifies the different laws found in the literature and that predicts the early bending response of shoots to arbitrary gravi-stimulations.


Assuntos
Gravitropismo , Brotos de Planta/fisiologia , Triticum/crescimento & desenvolvimento , Fenômenos Biomecânicos , Cotilédone/crescimento & desenvolvimento , Transdução de Sinais
8.
J Exp Bot ; 70(14): 3467-3494, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31305901

RESUMO

The colonization of the atmosphere by land plants was a major evolutionary step. The mechanisms that allow for vertical growth through air and the establishment and control of a stable erect habit are just starting to be understood. A key mechanism was found to be continuous posture control to counterbalance the mechanical and developmental challenges of maintaining a growing upright structure. An interdisciplinary systems biology approach was invaluable in understanding the underlying principles and in designing pertinent experiments. Since this discovery previously held views of gravitropic perception had to be reexamined and this has led to the description of proprioception in plants. In this review, we take a purposefully pedagogical approach to present the dynamics involved from the cellular to whole-plant level. We show how the textbook model of how plants sense gravitational force has been replaced by a model of position sensing, a clinometer mechanism that involves both passive avalanches and active motion of statoliths, granular starch-filled plastids, in statocytes. Moreover, there is a transmission of information between statocytes and other specialized cells that sense the degree of organ curvature and reset asymmetric growth to straighten and realign the structure. We give an overview of how plants have used the interplay of active posture control and elastic sagging to generate a whole range of spatial displays during their life cycles. Finally, a position-integrating mechanism has been discovered that prevents directional plant growth from being disrupted by wind-induced oscillations.


Assuntos
Embriófitas/química , Embriófitas/crescimento & desenvolvimento , Fenômenos Biomecânicos , Elasticidade , Embriófitas/fisiologia , Gravitropismo , Mecanotransdução Celular
9.
Ann Bot ; 121(6): 1151-1161, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29373642

RESUMO

Background and Aims: Trees constantly experience wind, perceive resulting mechanical cues, and modify their growth and development accordingly. Previous studies have demonstrated that multiple bending treatments trigger ovalization of the stem and the formation of flexure wood in gymnosperms, but ovalization and flexure wood have rarely been studied in angiosperms, and none of the experiments conducted so far has used multidirectional bending treatments at controlled intensities. Assuming that bending involves tensile and compressive strain, we hypothesized that different local strains may generate specific growth and wood differentiation responses. Methods: Basal parts of young poplar stems were subjected to multiple transient controlled unidirectional bending treatments during 8 weeks, which enabled a distinction to be made between the wood formed under tensile or compressive flexural strains. This set-up enabled a local analysis of poplar stem responses to multiple stem bending treatments at growth, anatomical, biochemical and molecular levels. Key Results: In response to multiple unidirectional bending treatments, poplar stems developed significant cross-sectional ovalization. At the tissue level, some aspects of wood differentiation were similarly modulated in the compressed and stretched zones (vessel frequency and diameter of fibres without a G-layer), whereas other anatomical traits (vessel diameter, G-layer formation, diameter of fibres with a G-layer and microfibril angle) and the expression of fasciclin-encoding genes were differentially modulated in the two zones. Conclusions: This work leads us to propose new terminologies to distinguish the 'flexure wood' produced in response to multiple bidirectional bending treatments from wood produced under transient tensile strain (tensile flexure wood; TFW) or under transient compressive strain (compressive flexure wood; CFW). By highlighting similarities and differences between tension wood and TFW and by demonstrating that plants could have the ability to discriminate positive strains from negative strains, this work provides new insight into the mechanisms of mechanosensitivity in plants.


Assuntos
Resistência à Flexão , Madeira , Força Compressiva , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia , Populus/anatomia & histologia , Populus/fisiologia , Resistência à Tração , Madeira/anatomia & histologia , Madeira/fisiologia
10.
Plant J ; 88(3): 468-475, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27354251

RESUMO

A major challenge in plant systems biology is the development of robust, predictive multiscale models for organ growth. In this context it is important to bridge the gap between the, rather well-documented molecular scale and the organ scale by providing quantitative methods to study within-organ growth patterns. Here, we describe a simple method for the analysis of the evolution of growth patterns within rod-shaped organs that does not require adding markers at the organ surface. The method allows for the simultaneous analysis of root and hypocotyl growth, provides spatio-temporal information on curvature, growth anisotropy and relative elemental growth rate and can cope with complex organ movements. We demonstrate the performance of the method by documenting previously unsuspected complex growth patterns within the growing hypocotyl of the model species Arabidopsis thaliana during normal growth, after treatment with a growth-inhibiting drug or in a mechano-sensing mutant. The method is freely available as an intuitive and user-friendly Matlab application called KymoRod.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
11.
BMC Genomics ; 18(1): 300, 2017 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-28412928

RESUMO

BACKGROUND: Trees experience mechanical stimuli -like wind- that trigger thigmomorphogenetic syndrome, leading to modifications of plant growth and wood quality. This syndrome affects tree productivity but is also believed to improve tree acclimation to chronic wind. Wind is particularly challenging for trees, because of their stature and perenniality. Climate change forecasts are predicting that the occurrence of high wind will worsen, making it increasingly vital to understand the mechanisms regulating thigmomorphogenesis, especially in perennial plants. By extension, this also implies factoring in the recurring nature of wind episodes. However, data on the molecular processes underpinning mechanoperception and transduction of mechanical signals, and their dynamics, are still dramatically lacking in trees. RESULTS: Here we performed a genome-wide and time-series analysis of poplar transcriptional responsiveness to transitory and recurring controlled stem bending, mimicking wind. The study revealed that 6% of the poplar genome is differentially expressed after a single transient bending. The combination of clustering, Gene Ontology categorization and time-series expression approaches revealed the diversity of gene expression patterns and biological processes affected by stem bending. Short-term transcriptomic responses entailed a rapid stimulation of plant defence and abiotic stress signalling pathways, including ethylene and jasmonic acid signalling but also photosynthesis process regulation. Late transcriptomic responses affected genes involved in cell wall organization and/or wood development. An analysis of the molecular impact of recurring bending found that the vast majority (96%) of the genes differentially expressed after a first bending presented reduced or even net-zero amplitude regulation after the second exposure to bending. CONCLUSION: This study constitutes the first dynamic characterization of the molecular processes affected by single or repeated stem bending in poplar. Moreover, the global attenuation of the transcriptional responses, observed from as early as after a second bending, indicates the existence of a mechanism governing a fine tuning of plant responsiveness. This points toward several mechanistic pathways that can now be targeted to elucidate the complex dynamics of wind acclimation.


Assuntos
Populus/genética , Estresse Mecânico , Transcriptoma , Análise por Conglomerados , Genoma de Planta , Mecanotransdução Celular , Análise de Sequência com Séries de Oligonucleotídeos , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Populus/crescimento & desenvolvimento , Populus/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
12.
New Phytol ; 212(2): 333-7, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27532273

RESUMO

Contents 333 I. 333 II. 334 III. 334 IV. 336 336 References 337 SUMMARY: Although the sensing of shape and deformation was historically involved in the control of animal locomotion, it is now increasingly being incorporated in developmental biology. Proprioception, the perception of the self, is particularly key to the question of the reproducibility of shapes: the many regulators of growth may lead to a large array of geometries, but shape sensing restricts these diverse outputs to a limited number of forms. Mechanistically, and in addition to geometrical feedback onto the diffusion and transport of molecular factors, we highlight the role of shape-derived mechanical stress and strain in this process. Through examples at the cell, tissue and organism scales, it appears that such mechanical feedback adds robustness to morphogenesis. Interestingly, synergies exist between shape sensing and response to external cues, such as wind and gravity. Understanding the molecular basis of proprioception is now within reach and opens up many avenues for an integrative view of development.


Assuntos
Plantas/anatomia & histologia , Mecanotransdução Celular , Modelos Biológicos , Desenvolvimento Vegetal , Propriocepção
13.
New Phytol ; 210(3): 850-60, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26790391

RESUMO

Controlled experiments have shown that trees acclimate thigmomorphogenetically to wind-loads by sensing their deformation (strain). However, the strain regime in nature is exposed to a full spectrum of winds. We hypothesized that trees avoid overreacting by responding only to winds which bring information on local climate and/or wind exposure. Additionally, competition for light dependent on tree social status also likely affects thigmomorphogenesis. We monitored and manipulated quantitatively the strain regimes of 15 pairs of beech (Fagus sylvatica) trees of contrasting social status in an acclimated stand, and quantified the effects of these regimes on the radial growth over a vegetative season. Trees exposed to artificial bending, the intensity of which corresponds to the strongest wind-induced strains, enhanced their secondary growth by at least 80%. Surprisingly, this reaction was even greater - relatively - for suppressed trees than for dominant ones. Acclimated trees did not sense the different types of wind events in the same way. Daily wind speed peaks due to thermal winds were filtered out. Thigmomorphogenesis was therefore driven by intense storms. Thigmomorphogenesis is also likely to be involved in determining social status.


Assuntos
Aclimatação/fisiologia , Florestas , Árvores/fisiologia , Vento , Intervalos de Confiança , Modelos Biológicos , Estresse Mecânico , Árvores/crescimento & desenvolvimento
14.
PLoS Comput Biol ; 11(2): e1004037, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25692607

RESUMO

Land plants rely mainly on gravitropism and phototropism to control their posture and spatial orientation. In natural conditions, these two major tropisms act concurrently to create a photogravitropic equilibrium in the responsive organ. Recently, a parsimonious model was developed that accurately predicted the complete gravitropic and proprioceptive control over the movement of different organs in different species in response to gravitational stimuli. Here we show that the framework of this unifying graviproprioceptive model can be readily extended to include phototropism. The interaction between gravitropism and phototropism results in an alignment of the apical part of the organ toward a photogravitropic set-point angle. This angle is determined by a combination of the two directional stimuli, gravity and light, weighted by the ratio between the gravi- and photo-sensitivities of the plant organ. In the model, two dimensionless numbers, the graviproprioceptive number B and the photograviceptive number M, control the dynamics and the shapes of the movement. The extended model agrees well with two sets of detailed quantitative data on photogravitropic equilibrium in oat coleoptiles. It is demonstrated that the influence of light intensity I can be included in the model in a power-law-dependent relationship M(I). The numbers B and M and the related photograviceptive number D are all quantitative genetic traits that can be measured in a straightforward manner, opening the way to the phenotyping of molecular and mechanical aspects of shoot tropism.


Assuntos
Gravitropismo/fisiologia , Modelos Biológicos , Fototropismo/fisiologia , Brotos de Planta/fisiologia , Biologia Computacional , Fenótipo
15.
Proc Natl Acad Sci U S A ; 110(2): 755-60, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23236182

RESUMO

Gravitropism, the slow reorientation of plant growth in response to gravity, is a key determinant of the form and posture of land plants. Shoot gravitropism is triggered when statocysts sense the local angle of the growing organ relative to the gravitational field. Lateral transport of the hormone auxin to the lower side is then enhanced, resulting in differential gene expression and cell elongation causing the organ to bend. However, little is known about the dynamics, regulation, and diversity of the entire bending and straightening process. Here, we modeled the bending and straightening of a rod-like organ and compared it with the gravitropism kinematics of different organs from 11 angiosperms. We show that gravitropic straightening shares common traits across species, organs, and orders of magnitude. The minimal dynamic model accounting for these traits is not the widely cited gravisensing law but one that also takes into account the sensing of local curvature, what we describe here as a graviproprioceptive law. In our model, the entire dynamics of the bending/straightening response is described by a single dimensionless "bending number" B that reflects the ratio between graviceptive and proprioceptive sensitivities. The parameter B defines both the final shape of the organ at equilibrium and the timing of curving and straightening. B can be estimated from simple experiments, and the model can then explain most of the diversity observed in experiments. Proprioceptive sensing is thus as important as gravisensing in gravitropic control, and the B ratio can be measured as phenotype in genetic studies.


Assuntos
Gravitropismo/fisiologia , Magnoliopsida/fisiologia , Modelos Biológicos , Desenvolvimento Vegetal/fisiologia , Brotos de Planta/fisiologia , Propriocepção/fisiologia , Fenômenos Biomecânicos , Ácidos Indolacéticos/metabolismo , Especificidade da Espécie
16.
New Phytol ; 203(1): 168-81, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24684233

RESUMO

Mechanical cues are essential signals regulating plant growth and development. In response to wind, trees develop a thigmomorphogenetic response characterized by a reduction in longitudinal growth, an increase in diameter growth, and changes in mechanical properties. The molecular mechanisms behind these processes are poorly understood. In poplar, PtaZFP2, a C2H2 transcription factor, is rapidly up-regulated after stem bending. To investigate the function of PtaZFP2, we analyzed PtaZFP2-overexpressing poplars (Populus tremula × Populus alba). To unravel the genes downstream PtaZFP2, a transcriptomic analysis was performed. PtaZFP2-overexpressing poplars showed longitudinal and cambial growth reductions together with an increase in the tangent and hardening plastic moduli. The regulation level of mechanoresponsive genes was much weaker after stem bending in PtaZFP2-overexpressing poplars than in wild-type plants, showing that PtaZFP2 negatively modulates plant responsiveness to mechanical stimulation. Microarray analysis revealed a high proportion of down-regulated genes in PtaZFP2-overexpressing poplars. Among these genes, several were also shown to be regulated by mechanical stimulation. Our results confirmed the important role of PtaZFP2 during plant acclimation to mechanical load, in particular through a negative control of plant molecular responsiveness. This desensitization process could modulate the amplitude and duration of the plant response during recurrent stimuli.


Assuntos
Proteínas de Plantas/fisiologia , Caules de Planta/crescimento & desenvolvimento , Populus/genética , Fatores de Transcrição/fisiologia , Dedos de Zinco , Aclimatação/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Estresse Mecânico , Fatores de Transcrição/genética , Transcriptoma , Árvores/genética , Árvores/crescimento & desenvolvimento , Vento
17.
J Exp Bot ; 65(8): 1997-2008, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24558073

RESUMO

When tree stems are mechanically stimulated, a rapid long-distance signal is induced that slows down primary growth. An investigation was carried out to determine whether the signal might be borne by a mechanically induced pressure pulse in the xylem. Coupling xylem flow meters and pressure sensors with a mechanical testing device, the hydraulic effects of mechanical deformation of tree stem and branches were measured. Organs of several tree species were studied, including gymnosperms and angiosperms with different wood densities and anatomies. Bending had a negligible effect on xylem conductivity, even when deformations were sustained or were larger than would be encountered in nature. It was found that bending caused transient variation in the hydraulic pressure within the xylem of branch segments. This local transient increase in pressure in the xylem was rapidly propagated along the vascular system in planta to the upper and lower regions of the stem. It was shown that this hydraulic pulse originates from the apoplast. Water that was mobilized in the hydraulic pulses came from the saturated porous material of the conduits and their walls, suggesting that the poroelastic behaviour of xylem might be a key factor. Although likely to be a generic mechanical response, quantitative differences in the hydraulic pulse were found in different species, possibly related to differences in xylem anatomy. Importantly the hydraulic pulse was proportional to the strained volume, similar to known thigmomorphogenetic responses. It is hypothesized that the hydraulic pulse may be the signal that rapidly transmits mechanobiological information to leaves, roots, and apices.


Assuntos
Magnoliopsida/fisiologia , Brotos de Planta/fisiologia , Traqueófitas/fisiologia , Árvores/fisiologia , Madeira/fisiologia , Fenômenos Biomecânicos , Magnoliopsida/anatomia & histologia , Pressão Osmótica , Brotos de Planta/anatomia & histologia , Especificidade da Espécie , Traqueófitas/anatomia & histologia , Árvores/anatomia & histologia , Madeira/anatomia & histologia , Xilema/anatomia & histologia , Xilema/fisiologia
18.
Physiol Plant ; 150(2): 225-37, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24032360

RESUMO

Inter-organ communication is essential for plants to coordinate development and acclimate to mechanical environmental fluctuations. The aim of this study was to investigate long-distance signaling in trees. We compared on young poplars the short-term effects of local flame wounding and of local stem bending for two distal responses: (1) stem primary growth and (2) the expression of mechanoresponsive genes in stem apices. We developed a non-contact measurement method based on the analysis of apex images in order to measure the primary growth of poplars. The results showed a phased stem elongation with alternating nocturnal circumnutation phases and diurnal growth arrest phases in Populus tremula × alba clone INRA 717-1B4. We applied real-time polymerase chain reaction (RT-PCR) amplifications in order to evaluate the PtaZFP2, PtaTCH2, PtaTCH4, PtaACS6 and PtaJAZ5 expressions. The flame wounding inhibited primary growth and triggered remote molecular responses. Flame wounding induced significant changes in stem elongation phases, coupled with inhibition of circumnutation. However, the circadian rhythm of phases remained unaltered and the treated plants were always phased with control plants during the days following the stress. For bent plants, the stimulated region of the stem showed an increased PtaJAZ5 expression, suggesting the jasmonates may be involved in local responses to bending. No significant remote responses to bending were observed.


Assuntos
Caules de Planta/crescimento & desenvolvimento , Caules de Planta/genética , Populus/crescimento & desenvolvimento , Populus/genética , Estresse Fisiológico/genética , Biomarcadores/metabolismo , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Cinética , Mecanotransdução Celular/genética , Caules de Planta/fisiologia , Populus/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
19.
Methods Mol Biol ; 2368: 117-131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34647253

RESUMO

Quantitative measurements of plant gravitropic response are challenging. Differences in growth rates between species and environmental conditions make it difficult to compare the intrinsic gravitropic responses of different plants. In addition, the bending movement associated with gravitropism is competing with the tendency of plants to grow straight, through a mechanism called proprioception (ability to sense its own shape). Disentangling these two tendencies is not trivial. Here, we use a combination of modeling, experiment and image analysis to estimate the intrinsic gravitropic and proprioceptive sensitivities of stems, using Arabidopsis as an example.


Assuntos
Gravitropismo , Arabidopsis , Plantas , Madeira
20.
BMC Biol ; 8: 18, 2010 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-20202192

RESUMO

BACKGROUND: Technological advances have enabled the accurate quantification of gene expression, even within single cell types. While transcriptome analyses are routinely performed, most experimental designs only provide snapshots of gene expression. Molecular mechanisms underlying cell fate or positional signalling have been revealed through these discontinuous datasets. However, in developing multicellular structures, temporal and spatial cues, known to directly influence transcriptional networks, get entangled as the cells are displaced and expand. Access to an unbiased view of the spatiotemporal regulation of gene expression occurring during development requires a specific framework that properly quantifies the rate of change of a property in a moving and expanding element, such as a cell or an organ segment. RESULTS: We show how the rate of change in gene expression can be quantified by combining kinematics and real-time polymerase chain reaction data in a mechanistic model which considers any organ as a continuum. This framework was applied in order to assess the developmental regulation of the two reference genes Actin11 and Elongation Factor 1-beta in the apex of poplar root. The growth field was determined by time-lapse photography and transcript density was obtained at high spatial resolution. The net accumulation rates of the transcripts of the two genes were found to display highly contrasted developmental profiles. Actin11 showed pulses of up and down regulation in the accelerating and decelerating parts of the growth zone while the dynamic of EF1beta were much slower. This framework provides key information about gene regulation in a developing organ, such as the location, the duration and the intensity of gene induction/repression. CONCLUSIONS: We demonstrated that gene expression patterns can be monitored using the continuity equation without using mutants or reporter constructions. Given the rise of imaging technologies, this framework in our view opens a new way to dissect the molecular basis of growth regulation, even in non-model species or complex structures.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Raízes de Plantas/genética , Populus/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Modelos Teóricos , Fator 1 de Elongação de Peptídeos/genética , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA