RESUMO
Optimizing data-independent acquisition methods for proteomics applications often requires balancing spectral resolution and acquisition speed. Here, we describe a real-time full mass range implementation of the phase-constrained spectrum deconvolution method (ΦSDM) for Orbitrap mass spectrometry that increases mass resolving power without increasing scan time. Comparing its performance to the standard enhanced Fourier transformation signal processing revealed that the increased resolving power of ΦSDM is beneficial in areas of high peptide density and comes with a greater ability to resolve low-abundance signals. In a standard 2 h analysis of a 200 ng HeLa digest, this resulted in an increase of 16% in the number of quantified peptides. As the acquisition speed becomes even more important when using fast chromatographic gradients, we further applied ΦSDM methods to a range of shorter gradient lengths (21, 12, and 5 min). While ΦSDM improved identification rates and spectral quality in all tested gradients, it proved particularly advantageous for the 5 min gradient. Here, the number of identified protein groups and peptides increased by >15% in comparison to enhanced Fourier transformation processing. In conclusion, ΦSDM is an alternative signal processing algorithm for processing Orbitrap data that can improve spectral quality and benefit quantitative accuracy in typical proteomics experiments, especially when using short gradients.
Assuntos
Proteoma , Espectrometria de Massas em Tandem , Humanos , Proteoma/metabolismo , Espectrometria de Massas em Tandem/métodos , Peptídeos/análise , Células HeLa , Proteômica/métodosRESUMO
The growing trend toward high-throughput proteomics demands rapid liquid chromatography-mass spectrometry (LC-MS) cycles that limit the available time to gather the large numbers of MS/MS fragmentation spectra required for identification. Orbitrap analyzers scale performance with acquisition time and necessarily sacrifice sensitivity and resolving power to deliver higher acquisition rates. We developed a new mass spectrometer that combines a mass-resolving quadrupole, the Orbitrap, and the novel Asymmetric Track Lossless (Astral) analyzer. The new hybrid instrument enables faster acquisition of high-resolution accurate mass (HRAM) MS/MS spectra compared with state-of-the-art mass spectrometers. Accordingly, new proteomics methods were developed that leverage the strengths of each HRAM analyzer, whereby the Orbitrap analyzer performs full scans with a high dynamic range and resolution, synchronized with the Astral analyzer's acquisition of fast and sensitive HRAM MS/MS scans. Substantial improvements are demonstrated over previous methods using current state-of-the-art mass spectrometers.
RESUMO
A popular method for peptide quantification relies on isobaric labeling such as tandem mass tags (TMT), which enables multiplexed proteome analyses. Quantification is achieved by reporter ions generated by fragmentation in a tandem mass spectrometer. However, with higher degrees of multiplexing, the smaller mass differences between the reporter ions increase the mass resolving power requirements. This contrasts with faster peptide sequencing capabilities enabled by lowered mass resolution on Orbitrap instruments. It is therefore important to determine the mass resolution limits for highly multiplexed quantification when maximizing proteome depth. Here, we defined the lower boundaries for resolving TMT reporter ions with 0.0063 Da mass differences using an ultra-high-field Orbitrap mass spectrometer. We found the optimal method depends on the relative ratio between closely spaced reporter ions and that 64 ms transient acquisition time provided sufficient resolving power for separating TMT reporter ions with absolute ratio changes up to 16-fold. Furthermore, a 32 ms transient processed with phase-constrained spectrum deconvolution provides >50% more identifications with >99% quantified but with a slight loss in quantification precision and accuracy. These findings should guide decisions on what Orbitrap resolution settings to use in future proteomics experiments, relying on isobaric TMT reporter ion quantification.
Assuntos
Peptídeos/análise , Proteoma/isolamento & purificação , Proteômica/métodos , Coloração e Rotulagem/métodos , Espectrometria de Massas em Tandem/métodos , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/química , Células Epiteliais/citologia , Células HeLa , Humanos , Íons , Células Jurkat , Neurônios/química , Neurônios/patologia , Osteoblastos/química , Osteoblastos/patologia , Proteólise , Proteoma/genética , Proteoma/metabolismo , Epitélio Pigmentado da Retina/química , Epitélio Pigmentado da Retina/citologiaRESUMO
Reflectron-based time-of-flight analyzers rely on subnanosecond detector time response to achieve acceptable resolving power for low-mid-mass, multiple-ion peaks. With the adoption of multireflection analyzers, order of magnitude longer folded ion paths relax restrictions on detector response time, allowing implementation of new technologies that greatly improve dynamic range, detector lifetime, and ion detection efficiency. A detection system is presented, integrated into a multireflection analyzer, that combines 10 keV postacceleration and focal plane correction with a unique BxE focusing, optically coupled detector, preamplification, and dual-channel digitization. Calibration and peak-handling methods are also described. The instrument demonstrated >1 × 104 dynamic range in a single shot, > 100k resolving power, and a relative immunity to detector aging.
RESUMO
Mass spectrometry (MS)-based thermal stability assays have recently emerged as one of the most promising solutions for the identification of protein-ligand interactions. Here, we have investigated eight combinations of several recently introduced MS-based advancements, including the Phase-Constrained Spectral Deconvolution Method, Field Asymmetric Ion Mobility Spectrometry, and the implementation of a carrier sample as improved MS-based acquisition approaches for thermal stability assays (iMAATSA). We used intact Jurkat cells treated with a commercially available MEK inhibitor, followed by heat treatment, to prepare a set of unfractionated isobarically-labeled proof-of-concept samples to compare the performance of eight different iMAATSAs. Finally, the best-performing iMAATSA was compared to a conventional approach and evaluated in a fractionation experiment. Improvements of up to 82% and 86% were demonstrated in protein identifications and high-quality melting curves, respectively, over the conventional approach in the proof-of-concept study, while an approximately 12% improvement in melting curve comparisons was achieved in the fractionation experiment.
RESUMO
Despite dramatic reductions in the 1990s of N and P emissions in the drainage basin, Lake Peipsi/Chudskoe (Estonia/Russia) is still suffering from algal blooms, probably caused by low N:P ratios of the lake water. To quantify the sources and changes of N and P inputs to the lake as a result of economic changes, we modelled emissions, transfer and in-stream retention using a GIS model. The model was calibrated using river monitoring data from the 1985-1989 period, and used to simulate emissions and loads for five future scenarios for 2015-2019. During the 1985-1999 period, diffuse P emissions decreased relatively more than N diffuse emissions, but this was not reflected in the loads to the lake. P loads decreased relatively less than N loads, which caused a decrease in the N:P ratio of the rivers. About 30-45% of diffuse N emissions and only 3-10% of diffuse P emissions reaches the river network. In-stream retention reduces N and P loads to the lake by about 62% and 72%, respectively. Point sources contribute negligibly to the N load to the lake, but form about one-third of the P load. A target/fast development scenario is the most likely scenario for the 2015-2019 period, resulting in higher nutrient loads than in recent years. We conclude that effective load reductions can be achieved by focussing on diffuse N and P emissions close (< 50 km2) to the lake and by upgrading P removal capacity in wastewater treatment plants of towns.