Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 108(29): 12054-9, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21730190

RESUMO

Cancers frequently arise as a result of an acquired genomic instability and the subsequent clonal evolution of neoplastic cells with variable patterns of genetic aberrations. Thus, the presence and behaviors of distinct clonal populations in each patient's tumor may underlie multiple clinical phenotypes in cancers. We applied DNA content-based flow sorting to identify and isolate the nuclei of clonal populations from tumor biopsies, which was coupled with array CGH and targeted resequencing. The results produced high-definition genomic profiles of clonal populations from 40 pancreatic adenocarcinomas and a set of prostate adenocarcinomas, including serial biopsies from a patient who progressed to androgen-independent metastatic disease. The genomes of clonal populations were found to have patient-specific aberrations of clinical relevance. Furthermore, we identified genomic aberrations specific to therapeutically responsive and resistant clones arising during the evolution of androgen-independent metastatic prostate adenocarcinoma. We also distinguished divergent clonal populations within single biopsies and mapped aberrations in multiple aneuploid populations arising in primary and metastatic pancreatic adenocarcinoma. We propose that our high-definition analyses of the genomes of distinct clonal populations of cancer cells in patients in vivo can help guide diagnoses and tailor approaches to personalized treatment.


Assuntos
Adenocarcinoma/genética , Evolução Molecular , Variação Genética , Metástase Neoplásica/genética , Neoplasias Pancreáticas/genética , Neoplasias da Próstata/genética , Biópsia , Células Clonais , Hibridização Genômica Comparativa , Primers do DNA/genética , Citometria de Fluxo , Genômica/métodos , Humanos , Hibridização in Situ Fluorescente , Masculino , Análise em Microsséries , Reação em Cadeia da Polimerase , Medicina de Precisão/métodos , Análise de Sequência de DNA
2.
Blood ; 117(14): 3847-57, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21289309

RESUMO

The molecular target(s) cooperating with proteasome inhibition in multiple myeloma (MM) remain unknown. We therefore measured proliferation in MM cells transfected with 13 984 small interfering RNAs in the absence or presence of increasing concentrations of bortezomib. We identified 37 genes, which when silenced, are not directly cytotoxic but do synergistically potentiate the growth inhibitory effects of bortezomib. To focus on bortezomib sensitizers, genes that also sensitized MM to melphalan were excluded. When suppressed, the strongest bortezomib sensitizers were the proteasome subunits PSMA5, PSMB2, PSMB3, and PSMB7 providing internal validation, but others included BAZ1B, CDK5, CDC42SE2, MDM4, NME7, RAB8B, TFE3, TNFAIP3, TNK1, TOP1, VAMP2, and YY1. The strongest hit CDK5 also featured prominently in pathway analysis of primary screen data. Cyclin-dependent kinase 5 (CDK5) is expressed at high levels in MM and neural tissues with relatively low expression in other organs. Viral shRNA knockdown of CDK5 consistently sensitized 5 genetically variable MM cell lines to proteasome inhibitors (bortezomib and carfilzomib). Small-molecule CDK5 inhibitors were demonstrated to synergize with bortezomib to induce cytotoxicity of primary myeloma cells and myeloma cell lines. CDK5 regulation of proteasome subunit PSMB5 was identified as a probable route to sensitization.


Assuntos
Antineoplásicos/farmacologia , Quinase 5 Dependente de Ciclina/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores Enzimáticos/uso terapêutico , Mieloma Múltiplo/genética , Inibidores de Proteassoma , RNA Interferente Pequeno/isolamento & purificação , Antineoplásicos/administração & dosagem , Antineoplásicos/isolamento & purificação , Ácidos Borônicos/administração & dosagem , Ácidos Borônicos/farmacologia , Bortezomib , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/isolamento & purificação , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Sinergismo Farmacológico , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Genoma Humano/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Análise em Microsséries , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/fisiologia , Pirazinas/administração & dosagem , Pirazinas/farmacologia , Interferência de RNA/fisiologia , RNA Interferente Pequeno/análise , RNA Interferente Pequeno/genética , Células Tumorais Cultivadas
3.
Nature ; 448(7152): 439-44, 2007 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-17611497

RESUMO

Although AKT1 (v-akt murine thymoma viral oncogene homologue 1) kinase is a central member of possibly the most frequently activated proliferation and survival pathway in cancer, mutation of AKT1 has not been widely reported. Here we report the identification of a somatic mutation in human breast, colorectal and ovarian cancers that results in a glutamic acid to lysine substitution at amino acid 17 (E17K) in the lipid-binding pocket of AKT1. Lys 17 alters the electrostatic interactions of the pocket and forms new hydrogen bonds with a phosphoinositide ligand. This mutation activates AKT1 by means of pathological localization to the plasma membrane, stimulates downstream signalling, transforms cells and induces leukaemia in mice. This mechanism indicates a direct role of AKT1 in human cancer, and adds to the known genetic alterations that promote oncogenesis through the phosphatidylinositol-3-OH kinase/AKT pathway. Furthermore, the E17K substitution decreases the sensitivity to an allosteric kinase inhibitor, so this mutation may have important clinical utility for AKT drug development.


Assuntos
Proteínas Sanguíneas/química , Transformação Celular Neoplásica/genética , Mutação/genética , Neoplasias/genética , Fosfoproteínas/química , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/genética , Homologia de Sequência de Aminoácidos , Animais , Neoplasias da Mama/genética , Neoplasias Colorretais/genética , Análise Mutacional de DNA , Ativação Enzimática/genética , Feminino , Humanos , Leucemia/genética , Camundongos , Modelos Moleculares , Neoplasias/patologia , Neoplasias Ovarianas/genética , Estrutura Terciária de Proteína/genética , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
Nat Genet ; 36(9): 979-83, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15300251

RESUMO

The identification of tumor-suppressor genes in solid tumors by classical cancer genetics methods is difficult and slow. We combined nonsense-mediated RNA decay microarrays and array-based comparative genomic hybridization for the genome-wide identification of genes with biallelic inactivation involving nonsense mutations and loss of the wild-type allele. This approach enabled us to identify previously unknown mutations in the receptor tyrosine kinase gene EPHB2. The DU 145 prostate cancer cell line, originating from a brain metastasis, carries a truncating mutation of EPHB2 and a deletion of the remaining allele. Additional frameshift, splice site, missense and nonsense mutations are present in clinical prostate cancer samples. Transfection of DU 145 cells, which lack functional EphB2, with wild-type EPHB2 suppresses clonogenic growth. Taken together with studies indicating that EphB2 may have an essential role in cell migration and maintenance of normal tissue architecture, our findings suggest that mutational inactivation of EPHB2 may be important in the progression and metastasis of prostate cancer.


Assuntos
Mutação , Neoplasias da Próstata/genética , Receptor EphB2/genética , Linhagem Celular Tumoral , Códon sem Sentido , Emetina/farmacologia , Genes Supressores de Tumor , Humanos , Masculino , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Estabilidade de RNA , Transfecção
5.
Blood ; 115(8): 1594-604, 2010 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19996089

RESUMO

A paucity of validated kinase targets in human multiple myeloma has delayed clinical deployment of kinase inhibitors in treatment strategies. We therefore conducted a kinome-wide small interfering RNA (siRNA) lethality study in myeloma tumor lines bearing common t(4;14), t(14;16), and t(11;14) translocations to identify critically vulnerable kinases in myeloma tumor cells without regard to preconceived mechanistic notions. Fifteen kinases were repeatedly vulnerable in myeloma cells, including AKT1, AK3L1, AURKA, AURKB, CDC2L1, CDK5R2, FES, FLT4, GAK, GRK6, HK1, PKN1, PLK1, SMG1, and TNK2. Whereas several kinases (PLK1, HK1) were equally vulnerable in epithelial cells, others and particularly G protein-coupled receptor kinase, GRK6, appeared selectively vulnerable in myeloma. GRK6 inhibition was lethal to 6 of 7 myeloma tumor lines but was tolerated in 7 of 7 human cell lines. GRK6 exhibits lymphoid-restricted expression, and from coimmunoprecipitation studies we demonstrate that expression in myeloma cells is regulated via direct association with the heat shock protein 90 (HSP90) chaperone. GRK6 silencing causes suppression of signal transducer and activator of transcription 3 (STAT3) phosphorylation associated with reduction in MCL1 levels and phosphorylation, illustrating a potent mechanism for the cytotoxicity of GRK6 inhibition in multiple myeloma (MM) tumor cells. As mice that lack GRK6 are healthy, inhibition of GRK6 represents a uniquely targeted novel therapeutic strategy in human multiple myeloma.


Assuntos
Quinases de Receptores Acoplados a Proteína G/metabolismo , Mieloma Múltiplo/enzimologia , RNA Interferente Pequeno , Animais , Linhagem Celular Tumoral , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , Quinases de Receptores Acoplados a Proteína G/antagonistas & inibidores , Quinases de Receptores Acoplados a Proteína G/genética , Inativação Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Translocação Genética/efeitos dos fármacos , Translocação Genética/genética
6.
J Pathol ; 223(4): 543-52, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21294127

RESUMO

Androgen withdrawal is the standard treatment for advanced prostate cancer. Although this therapy is initially effective, nearly all prostate cancers become refractory to it. Approximately 15% of these castration-resistant prostate cancers harbour a genomic amplification at 10q22. The aim of this study was to explore the structure of the 10q22 amplicon and to determine the major driving genes. Application of high-resolution array-CGH using the 244k Agilent microarrays to cell lines with 10q22 amplification allowed us to narrow down the common amplified region to a region of 5.8 megabases. We silenced each of the genes of this region by an RNAi screen in the prostate cancer cell lines PC-3 and 22Rv1. We selected genes with a significant growth reduction in the 10q22 amplified cell line PC-3, but not in the non-amplified 22Rv1 cells, as putative target genes of this amplicon. Immunohistochemical analysis of the protein expression of these candidate genes on a tissue microarray enriched for 10q22 amplified prostate cancers revealed vinculin as the most promising target of this amplicon. We found a strong association between vinculin gene amplification and overexpression (p < 0.001). Further analysis of 443 specimens from across all stages of prostate cancer progression showed that vinculin expression was highest in castration-resistant prostate cancers, but negative or very low in benign prostatic hyperplasia (p < 0.0001). Additionally, high tumour cell proliferation measured by Ki67 expression was significantly associated with high vinculin expression in prostate cancer (p < 0.0001). Our data suggest that vinculin is a major driving gene of the 10q22 amplification in prostate cancer and that vinculin overexpression might contribute to prostate cancer progression by enhancing tumour cell proliferation.


Assuntos
Neoplasias da Próstata/metabolismo , Vinculina/biossíntese , Proliferação de Células , Cromossomos Humanos Par 10/genética , Hibridização Genômica Comparativa/métodos , Progressão da Doença , Amplificação de Genes , Estudos de Associação Genética/métodos , Humanos , Masculino , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Hiperplasia Prostática/metabolismo , Neoplasia Prostática Intraepitelial/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Neoplásico/genética , RNA Interferente Pequeno/genética , Vinculina/genética
7.
Sci Transl Med ; 13(603)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290053

RESUMO

Metastatic estrogen receptor α (ERα)-positive breast cancer is presently incurable. Seeking to target these drug-resistant cancers, we report the discovery of a compound, called ErSO, that activates the anticipatory unfolded protein response (a-UPR) and induces rapid and selective necrosis of ERα-positive breast cancer cell lines in vitro. We then tested ErSO in vivo in several preclinical orthotopic and metastasis mouse models carrying different xenografts of human breast cancer lines or patient-derived breast tumors. In multiple orthotopic models, ErSO treatment given either orally or intraperitoneally for 14 to 21 days induced tumor regression without recurrence. In a cell line tail vein metastasis model, ErSO was also effective at inducing regression of most lung, bone, and liver metastases. ErSO treatment induced almost complete regression of brain metastases in mice carrying intracranial human breast cancer cell line xenografts. Tumors that did not undergo complete regression and regrew remained sensitive to retreatment with ErSO. ErSO was well tolerated in mice, rats, and dogs at doses above those needed for therapeutic responses and had little or no effect on normal ERα-expressing murine tissues. ErSO mediated its anticancer effects through activation of the a-UPR, suggesting that activation of a tumor protective pathway could induce tumor regression.


Assuntos
Neoplasias da Mama , Recidiva Local de Neoplasia , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular , Linhagem Celular Tumoral , Cães , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Camundongos , Ratos , Resposta a Proteínas não Dobradas
8.
BMC Genomics ; 11: 25, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20067632

RESUMO

BACKGROUND: Neurofibrillary tangles (NFT), a cardinal neuropathological feature of Alzheimer's disease (AD) that is highly correlated with synaptic loss and dementia severity, appear to be partly attributable to increased phosphorylation of the microtubule stabilizing protein tau at certain AD-related residues. Identifying the kinases involved in the pathologic phosphorylation of tau may provide targets at which to aim new AD-modifying treatments. RESULTS: We report results from a screen of 572 kinases in the human genome for effects on tau hyperphosphorylation using a loss of function, high-throughput RNAi approach. We confirm effects of three kinases from this screen, the eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2), the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), and the A-kinase anchor protein 13 (AKAP13) on tau phosphorylation at the 12E8 epitope (serine 262/serine 356). We provide evidence that EIF2AK2 effects may result from effects on tau protein expression, whereas DYRK1A and AKAP13 are likely more specifically involved in tau phosphorylation pathways. CONCLUSIONS: These findings identify novel kinases that phosphorylate tau protein and provide a valuable reference data set describing the kinases involved in phosphorylating tau at an AD-relevant epitope.


Assuntos
Doença de Alzheimer/enzimologia , Proteínas Quinases/análise , RNA Interferente Pequeno/análise , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Testes Genéticos , Genoma Humano , Humanos , Fosforilação , Proteínas Quinases/genética , RNA Interferente Pequeno/genética , Regulação para Cima
9.
Mol Cancer ; 9: 218, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20718987

RESUMO

BACKGROUND: Ewing's sarcomas are aggressive musculoskeletal tumors occurring most frequently in the long and flat bones as a solitary lesion mostly during the teen-age years of life. With current treatments, significant number of patients relapse and survival is poor for those with metastatic disease. As part of novel target discovery in Ewing's sarcoma, we applied RNAi mediated phenotypic profiling to identify kinase targets involved in growth and survival of Ewing's sarcoma cells. RESULTS: Four Ewing's sarcoma cell lines TC-32, TC-71, SK-ES-1 and RD-ES were tested in high throughput-RNAi screens using a siRNA library targeting 572 kinases. Knockdown of 25 siRNAs reduced the growth of all four Ewing's sarcoma cell lines in replicate screens. Of these, 16 siRNA were specific and reduced proliferation of Ewing's sarcoma cells as compared to normal fibroblasts. Secondary validation and preliminary mechanistic studies highlighted the kinases STK10 and TNK2 as having important roles in growth and survival of Ewing's sarcoma cells. Furthermore, knockdown of STK10 and TNK2 by siRNA showed increased apoptosis. CONCLUSION: In summary, RNAi-based phenotypic profiling proved to be a powerful gene target discovery strategy, leading to successful identification and validation of STK10 and TNK2 as two novel potential therapeutic targets for Ewing's sarcoma.


Assuntos
Interferência de RNA , Sarcoma de Ewing/tratamento farmacológico , Divisão Celular , Linhagem Celular Tumoral , Humanos , Fenótipo , RNA Interferente Pequeno , Sarcoma de Ewing/patologia
10.
Breast Cancer Res Treat ; 124(2): 327-35, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20099025

RESUMO

Protein kinase C betaII (PKCßII) represents a novel potential target for anticancer therapies in breast cancer. In order to identify patient subgroups which might benefit from PKC-targeting therapies, we investigated the expression of PKCßII in human breast cancer cell lines and in a tissue microarray (TMA). We first screened breast cancer cell line representatives of breast cancer subtypes for PKCßII expression at the mRNA and at the protein levels. We analyzed a TMA comprising of tumors from 438 patients with a median followup of 15.4 years for PKCßII expression by immunohistochemistry along with other prognostic factors in breast cancer. Among a panel of human breast cancer cell lines, only MDA-MB-436, a triple negative basal cell line, showed overexpression for PKCßII both at the mRNA and at the protein levels. In breast cancer patients, cytoplasmic expression of PKCßII correlated positively with human epidermal growth factor receptor-2 (HER-2; P = 0.01) and Ki-67 (P = 0.016), while nuclear PKCßII correlated positively with estrogen receptor (ER; P = 0.016). The positive correlation of CK5/6 with cytoplasmic PKCßII (P = 0.033) lost statistical significance after adjusting for multiple comparisons (P = 0.198). Cytoplasmic PKCßII did not correlate with cyclooxygenase (COX-2; P = 0.925) and vascular endothelial growth factor (P = 1). There was no significant association between PKCßII staining and overall survival. Cytoplasmic PKCßII correlates with HER-2 and Ki-67, while nuclear PKCßII correlates with ER in breast cancer. Our study suggests the necessity for assessing the subcellular localization of PKCßII in breast cancer subtypes when evaluating the possible effectiveness of PKCßII-targeting agents.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/enzimologia , Proteína Quinase C/metabolismo , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Núcleo Celular/enzimologia , Ciclo-Oxigenase 2/metabolismo , Citoplasma/enzimologia , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Queratina-5/metabolismo , Queratina-6/metabolismo , Antígeno Ki-67/metabolismo , Prognóstico , Proteína Quinase C/genética , Proteína Quinase C beta , RNA Mensageiro/metabolismo , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Fatores de Tempo , Análise Serial de Tecidos , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
BMC Cancer ; 10: 181, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20444257

RESUMO

BACKGROUND: Neuroblastoma has successfully served as a model system for the identification of neuroectoderm-derived oncogenes. However, in spite of various efforts, only a few clinically useful prognostic markers have been found. Here, we present a framework, which integrates DNA, RNA and tissue data to identify and prioritize genetic events that represent clinically relevant new therapeutic targets and prognostic biomarkers for neuroblastoma. METHODS: A single-gene resolution aCGH profiling was integrated with microarray-based gene expression profiling data to distinguish genetic copy number alterations that were strongly associated with transcriptional changes in two neuroblastoma cell lines. FISH analysis using a hotspot tumor tissue microarray of 37 paraffin-embedded neuroblastoma samples and in silico data mining for gene expression information obtained from previously published studies including up to 445 healthy nervous system samples and 123 neuroblastoma samples were used to evaluate the clinical significance and transcriptional consequences of the detected alterations and to identify subsequently activated gene(s). RESULTS: In addition to the anticipated high-level amplification and subsequent overexpression of MYCN, MEIS1, CDK4 and MDM2 oncogenes, the aCGH analysis revealed numerous other genetic alterations, including microamplifications at 2p and 12q24.11. Most interestingly, we identified and investigated the clinical relevance of a previously poorly characterized amplicon at 12q24.31. FISH analysis showed low-level gain of 12q24.31 in 14 of 33 (42%) neuroblastomas. Patients with the low-level gain had an intermediate prognosis in comparison to patients with MYCN amplification (poor prognosis) and to those with no MYCN amplification or 12q24.31 gain (good prognosis) (P = 0.001). Using the in silico data mining approach, we identified elevated expression of five genes located at the 12q24.31 amplicon in neuroblastoma (DIABLO, ZCCHC8, RSRC2, KNTC1 and MPHOSPH9). Among these, DIABLO showed the strongest activation suggesting a putative role in neuroblastoma progression. CONCLUSIONS: The presented systematic and rapid framework, which integrates aCGH, gene expression and tissue data to obtain novel targets and biomarkers for cancer, identified a low-level gain of the 12q24.31 as a potential new biomarker for neuroblastoma progression. Furthermore, results of in silico data mining suggest a new neuroblastoma target gene, DIABLO, within this region, whose functional and therapeutic role remains to be elucidated in follow-up studies.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos Par 12 , Neuroblastoma/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Hibridização Genômica Comparativa , DNA de Neoplasias/genética , Mineração de Dados , Amplificação de Genes , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Neuroblastoma/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Prognóstico , RNA Neoplásico/genética , Transcrição Gênica
12.
J Transl Med ; 7: 43, 2009 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-19519883

RESUMO

BACKGROUND: Pancreatic cancer retains a poor prognosis among the gastrointestinal cancers. It affects 230,000 individuals worldwide, has a very high mortality rate, and remains one of the most challenging malignancies to treat successfully. Treatment with gemcitabine, the most widely used chemotherapeutic against pancreatic cancer, is not curative and resistance may occur. Combinations of gemcitabine with other chemotherapeutic drugs or biological agents have resulted in limited improvement. METHODS: In order to improve gemcitabine response in pancreatic cancer cells, we utilized a synthetic lethal RNAi screen targeting 572 known kinases to identify genes that when silenced would sensitize pancreatic cancer cells to gemcitabine. RESULTS: Results from the RNAi screens identified several genes that, when silenced, potentiated the growth inhibitory effects of gemcitabine in pancreatic cancer cells. The greatest potentiation was shown by siRNA targeting checkpoint kinase 1 (CHK1). Validation of the screening results was performed in MIA PaCa-2 and BxPC3 pancreatic cancer cells by examining the dose response of gemcitabine treatment in the presence of either CHK1 or CHK2 siRNA. These results showed a three to ten-fold decrease in the EC50 for CHK1 siRNA-treated cells versus control siRNA-treated cells while treatment with CHK2 siRNA resulted in no change compared to controls. CHK1 was further targeted with specific small molecule inhibitors SB 218078 and PD 407824 in combination with gemcitabine. Results showed that treatment of MIA PaCa-2 cells with either of the CHK1 inhibitors SB 218078 or PD 407824 led to sensitization of the pancreatic cancer cells to gemcitabine. CONCLUSION: These findings demonstrate the effectiveness of synthetic lethal RNAi screening as a tool for identifying sensitizing targets to chemotherapeutic agents. These results also indicate that CHK1 could serve as a putative therapeutic target for sensitizing pancreatic cancer cells to gemcitabine.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Carbazóis/farmacologia , Desoxicitidina/análogos & derivados , Inativação Gênica , Neoplasias Pancreáticas/tratamento farmacológico , Interferência de RNA , Idoso , Alcaloides/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Impedância Elétrica , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes , Transfecção , Gencitabina
13.
Methods Mol Biol ; 563: 275-87, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19597791

RESUMO

High-throughput RNA interference (HT-RNAi) is a powerful research tool for parallel, 'genome-wide', targeted knockdown of specific gene products. Such perturbation of gene product expression allows for the systematic query of gene function. The phenotypic results can be monitored by assaying for specific alterations in molecular and cellular endpoints, such as promoter activation, cell proliferation and survival. RNAi profiling may also be coupled with drug screening to identify molecular correlates of drug response. As with other genomic-scale data, methods of data analysis are required to handle the unique aspects of data normalization and statistical processing. In addition, novel techniques or knowledge-mining strategies are required to extract useful biological information from HT-RNAi data. Knowledge-mining strategies involve the novel application of bioinformatic tools and expert curation to provide biological context to genomic-scale data such as that generated from HT-RNAi data. Pathway-based tools, whether text-mining based or manually curated, serve an essential role in knowledge mining. These tools can be applied during all steps of HT-RNAi screen experiments including pre-screen knowledge gathering, assay development and hit confirmation and validation. Most importantly, pathway tools allow the interrogation of HT-RNAi data to identify and prioritize pathway-based biological information as a result of specific loss of gene function.


Assuntos
Bases de Conhecimento , RNA Interferente Pequeno/genética , Biologia de Sistemas/métodos , Animais , Bases de Dados Factuais , Descoberta de Drogas/métodos , Humanos , Redes e Vias Metabólicas , Software
14.
Cancer Res ; 67(5): 1943-9, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17332321

RESUMO

Pancreatic cancer is a highly aggressive disease characterized by poor prognosis and vast genetic instability. Recent microarray-based, genome-wide surveys have identified multiple recurrent copy number aberrations in pancreatic cancer; however, the target genes are, for the most part, unknown. Here, we characterized the 19q13 amplicon in pancreatic cancer to identify putative new drug targets. Copy number increases at 19q13 were quantitated in 16 pancreatic cancer cell lines and 31 primary tumors by fluorescence in situ hybridization. Cell line copy number data delineated a 1.1 Mb amplicon, the presence of which was also validated in 10% of primary pancreatic tumors. Comprehensive expression analysis by quantitative real-time reverse transcription-PCR indicated that seven transcripts within this region had consistently elevated expression levels in the amplified versus nonamplified cell lines. High-throughput loss-of-function screen by RNA interference was applied across the amplicon to identify genes whose down-regulation affected cell viability. This screen revealed five genes whose down-regulation led to significantly decreased cell viability in the amplified PANC-1 cells but not in the nonamplified MiaPaca-2 cells, suggesting the presence of multiple biologically interesting genes in this region. Of these, the transcriptional regulator intersex-like (IXL) was consistently overexpressed in amplified cells and had the most dramatic effect on cell viability. IXL silencing also resulted in G(0)-G(1) cell cycle arrest and increased apoptosis in PANC-1 cells. These findings implicate IXL as a novel amplification target gene in pancreatic cancer and suggest that IXL is required for cancer cell survival in 19q13-amplified tumors.


Assuntos
Apoptose/genética , Cromossomos Humanos Par 19 , Amplificação de Genes , Neoplasias Pancreáticas/patologia , Fatores de Transcrição/fisiologia , Sobrevivência Celular , Cromossomos Artificiais Bacterianos , Dosagem de Genes , Humanos , Complexo Mediador , Neoplasias Pancreáticas/genética , Interferência de RNA , Análise Serial de Tecidos , Células Tumorais Cultivadas
15.
Per Med ; 16(1): 51-65, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30468409

RESUMO

AIM: To help characterize the FDFT1 gene and protein expression in cancer. Cholesterol represents an important structural component of lipid rafts. These specializations can be involved in pathways stimulating cell growth, survival and other processes active in cancer. This cellular compartment can be expanded by acquisition of cholesterol from the circulation or by its synthesis in a metabolic pathway regulated by the FDFT1 enzyme. Given the critical role this might play in carcinogenesis and in the behavior of cancers, we have examined the level of this enzyme in various types of human cancer. Our demonstration of elevated levels of FDFT1 mRNA and protein in some tumors relative to surrounding normal tissue identifies this as a possible biomarker for disease development and progression, and as a potential new target for the treatment of cancer.


Assuntos
Farnesil-Difosfato Farnesiltransferase/genética , Neoplasias/genética , Biomarcadores Tumorais/genética , Carcinogênese , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Colesterol/análise , Colesterol/sangue , Metilação de DNA/genética , Progressão da Doença , Farnesil-Difosfato Farnesiltransferase/metabolismo , Genômica , Humanos , Microdomínios da Membrana/genética , Fosfatos de Poli-Isoprenil , Proteômica , RNA Mensageiro , Sesquiterpenos , Análise Serial de Tecidos/métodos , Transcriptoma/genética
16.
Spine (Phila Pa 1976) ; 44(11): E640-E649, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30475332

RESUMO

STUDY DESIGN: Case-control whole-genome sequencing analysis of a highly select, young cohort with symptomatic lumbar disk herniation (LDH) compared with the standard variation in a large reference population. OBJECTIVE: To assess genetic influences predisposing pediatric and young adult patients to symptomatic LDH. SUMMARY OF BACKGROUND DATA: LDH has traditionally been attributed to natural weakening or mechanical insult, but recent literature supports a potential genetic influence. METHODS: Young patients with symptomatic, clinically confirmed LDH who underwent surgical treatment were included. Patients were younger than the average age of presentation, limiting the influence of environmental risks. DNA collected from these patients was compared with a reference genome (1000 Genomes Project). A genome-wide association study using whole-genome sequencing was used to characterize genetic mutations potentially associated with LDH. RESULTS: Among the 61 candidate genes flagged, 20 had missense mutations in 2 or more LDH cases. Missense mutations in collagen-encoding genes were observed in 12 of 15 patients (80%). A potential association with clinical presentation was indicated by odds ratios of key single-nucleotide polymorphism (SNP) variants in genes that encode collagen. Relative to the reference population, the LDH cohort demonstrated two statistically significant SNP variants in the gene encoding for aggrecan, a protein that facilitates load-bearing properties in the cartilaginous end plate. Aggrecan genes SNPs rs3817428 and rs11638262 were significantly associated with decreased odds of symptomatic LDH: odds ratio 0.05 (0.02-0.11) and 0.04 (0-0.26), respectively (P < 1 × 10 for both). CONCLUSION: These results suggest that collagen-encoding variants may be a genetic risk factor for LDH. They also shed new light on the role of variants that impact aggrecan, which sustains the cartilaginous end plate. Genetic predisposition to LDH may therefore be related to a multimodal combination of mutations that affect the nucleus pulposus, annulus fibrosus, and the cartilaginous end plates. LEVEL OF EVIDENCE: 4.


Assuntos
Predisposição Genética para Doença/genética , Deslocamento do Disco Intervertebral/diagnóstico por imagem , Deslocamento do Disco Intervertebral/genética , Vértebras Lombares/diagnóstico por imagem , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Adulto , Agrecanas/genética , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Degeneração do Disco Intervertebral , Masculino , Adulto Jovem
17.
Hum Mutat ; 29(4): 461-7, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18330920

RESUMO

Chemotherapy is a major treatment modality for individuals affected by cancer. Currently, a number of genome-based technologies are being adopted to identify genes associated with drug response; however, large-scale genetic association applications are still limited. Here we describe a novel strategy based on the genetic and drug response data of the NCI60 cell lines to discover potential candidate genetic variants associated with variable response to chemotherapy. As an example we have applied this strategy to discover single genetic markers and haplotypes from candidate genes previously implicated in the pharmacobiology of gemcitabine. Single-marker association analyses have implicated the association of four SNPs within the gene loci of CDC5L, EPC2, POLS, and PARP1. We have also investigated the combined effect of SNPs using haplotype-based analysis. Accordingly, we have shown modest association of haplotypes in six genes, whereas the most significant associations included a haplotype of the POLS gene. The hypothesis-generating tool presented in this study can be applied to drugs profiled in the NCI60 cell line screen and provides an effective means for the identification of genes associated with drug response. The results obtained using this novel methodology can be used to better design the clinical trials for effective study of the chemotherapeutic agents and thus provide a basis for individualized chemotherapy.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/farmacocinética , Desoxicitidina/análogos & derivados , Farmacogenética , Polimorfismo de Nucleotídeo Único , Linhagem Celular Tumoral , Desoxicitidina/farmacocinética , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Dosagem de Genes , Perfilação da Expressão Gênica , Variação Genética , Haplótipos , Humanos , Masculino , Gencitabina
18.
Int J Cancer ; 123(2): 330-339, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18452169

RESUMO

S100P protein regulates calcium signal transduction and mediates cytoskeletal interaction, protein phosphorylation and transcriptional control. We have previously shown how elevated S100P levels in prostate cancer strongly correlate with progression to metastatic disease. In our study, we evaluated the functional significance of S100P expression on prostate tumor growth in vitro and in vivo. S100P levels were modulated by overexpressing S100P in PC3 prostate cancer cells and by silencing S100P levels in 22Rv1 prostate cancer cells. Overexpression of S100P in PC3 cells promoted cell growth, increased the percentage of S-phase cells, decreased basal apoptosis rate and promoted anchorage independent growth in soft agar. Furthermore, prostate cancer cells overexpressing S100P were protected against camptothecin-induced apoptosis. Conversely, silencing of S100P in 22Rv1 cells using siRNA resulted in a prominent cytostatic effect. The influence of S100P on tumor growth and metastases were assessed in vivo. S100P-overexpressing PC3 cells had a dramatically increased tumor formation compared to controls. Microarray analysis showed the involvement of growth pathways including increased androgen receptor expression in S100P-overexpressing cells. These results provide the first functional proof that S100P overexpression can upregulate androgen receptor expression and thereby promote prostate cancer progression by increasing cell growth. Moreover, the results confirm the oncogenic nature of S100P in prostate cancer and suggest that the protein may directly confer resistance to chemotherapy. Hence, S100P could be considered a potential drug target or a chemosensitization target, and could also serve as a biomarker for aggressive, hormone-refractory and metastatic prostate cancer.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Apoptose , Western Blotting , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo , Impedância Elétrica , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , Camundongos SCID , Proteínas de Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo , Regulação para Cima
19.
Br J Haematol ; 140(3): 344-7, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18053070

RESUMO

Despite its' central role, the precise mechanisms of the phosphoinositide 3-kinase/Akt (PI3K)/Akt pathway activation in acute myeloid leukaemia (AML) have not been elucidated. Recently, a recurrent novel AKT1 pleckstrin homology domain (PHD) mutation leading to membrane translocation, constitutive AKT activation and leukaemia development in mice was described. To assess AKT1 PHD mutations in AML, we sequenced 57 specimens from 49 AML patients, all of whom showed PI3K/AKT pathway activation by analysis of total and phospho-protein expression for AKT, mTor, p70S6Kinase, S6ribosomal protein and PTEN. No mutations in AKT1 PHD were identified, making this mutation an unlikely cause of PI3K/AKT pathway activation in AML.


Assuntos
Proteínas Sanguíneas/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Domínios de Homologia de src , Análise Mutacional de DNA/métodos , Humanos , Fosforilação , Análise Serial de Proteínas , Translocação Genética
20.
Methods Mol Biol ; 353: 177-203, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17332642

RESUMO

RNA interference (RNAi) is a natural mechanism, that is triggered by the introduction of double-stranded RNA into a cell. The long double-stranded RNA is then processed into short interfering RNA (siRNA) that mediates sequence-specific degradation of homologous transcripts. This phenomenon can be exploited to experimentally trigger RNAi and downregulate gene expression by transfecting mammalian cells with synthetic siRNA. Thus, siRNAs can be designed to specifically silence the expression of genes bearing a particular target sequence. In this chapter, we present methods and procedures for validating the effects of siRNA-based gene silencing on target gene expression. To illustrate our approach, we use examples from our analysis of a Cancer Gene Library of 278 siRNAs targeting 139 classic oncogenes and tumor suppressor genes (Qiagen Inc., Germantown, MD). Specifically, this library was used for high-throughput RNAi phenotype analysis followed by gene expression analysis to validate gene silencing for siRNA that produced a phenotype. Methods and protocols are presented that illustrate how sequence-specific gene silencing of effective siRNAs are analyzed and validated by quantitative real-time PCR assays to measure the extent of target gene silencing, as well as effects on various gene expression end points.


Assuntos
Reação em Cadeia da Polimerase/métodos , RNA Interferente Pequeno/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , DNA Complementar/biossíntese , DNA Complementar/genética , DNA de Neoplasias/biossíntese , DNA de Neoplasias/genética , Feminino , Expressão Gênica , Genes Supressores de Tumor , Células HeLa , Humanos , Oncogenes , Fenótipo , Reação em Cadeia da Polimerase/estatística & dados numéricos , Interferência de RNA , RNA Neoplásico/genética , RNA Neoplásico/isolamento & purificação , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA