Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J R Soc Interface ; 18(175): 20200900, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33622146

RESUMO

This study aims to estimate the reduction in collagen fibril density within the central 6 mm radius of keratoconic corneas through the processing of microstructure and videokeratography data. Collagen fibril distribution maps and topography maps were obtained for seven keratoconic and six healthy corneas, and topographic features were assessed to detect and calculate the area of the cone in each keratoconic eye. The reduction in collagen fibril density within the cone area was estimated with reference to the same region in the characteristic collagen fibril maps of healthy corneas. Together with minimum thickness and mean central corneal refractive power, the cone area was correlated with the reduction in the cone collagen fibrils. For the corneas considered, the mean area of keratoconic cones was 3.30 ± 1.90 mm2. Compared with healthy corneas, fibril density in the cones of keratoconic corneas was lower by as much as 35%, and the mean reduction was 17 ± 10%. A linear approximation was developed to relate the magnitude of reduction to the refractive power, minimum corneal thickness and cone area (R2 = 0.95, p < 0.001). Outside the cone area, there was no significant difference between fibril arrangement in healthy and keratoconic corneas. The presented method can predict the mean fibril density in the keratoconic eye's cone area. The technique can be applied in microstructure-based finite-element models of the eye to regulate its stiffness level and the stiffness distribution within the areas affected by keratoconus.


Assuntos
Córnea , Ceratocone , Topografia da Córnea , Humanos
2.
Artigo em Inglês | MEDLINE | ID: mdl-31500114

RESUMO

PURPOSE: To simulate numerically the collagen fibril reorientation observed experimentally in the cornea. METHODS: Fibril distribution in corneal strip specimens was monitored using X-ray scattering while under gradually increasing axial loading. The data were analysed at each strain level in order to quantify the changes in the angular distribution of fibrils with strain growth. The resulting relationship between stain and fibril reorientation was adopted in a constitutive model to control the mechanical anisotropy of the tissue material. The outcome of the model was validated against the experimental measurements before using the model in simplified representations of two surgical procedures. RESULTS: The numerical model was able to reproduce the experimental measurements of specimen deformation and fibril reorientation under uniaxial loading with errors below 8.0%. With tissue removal simulated in a full eye numerical model, fibril reorientation could be predicted around the affected area, and this change both increased with larger tissue removal and reduced gradually away from that area. CONCLUSION: The presented method can successfully simulate fibril reorientation with changes in the strain regime affecting cornea tissue. Analyses based on this method showed that fibrils tend to align parallel to the tissue cut following keratoplasty operations. With the ability to simulate fibril reorientation, numerical modelling can have a greater potential in modelling the behaviour following surgery and injury to the cornea.


Assuntos
Córnea/metabolismo , Colágenos Associados a Fibrilas/metabolismo , Anisotropia , Humanos , Modelos Biológicos , Modelos Estatísticos
3.
PLoS One ; 14(4): e0214770, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30934028

RESUMO

This study aimed to analyse microstructure data on the density and orientation of collagen fibrils in whole eye globes and to propose an effective method for the preparation of data for use in numerical simulations of the eye's biomechanical performance. Wide-angle X-ray scattering was applied to seven healthy ex-vivo human eyes. Each eye was dissected into an anterior and a posterior cup, and radial incisions were used to flatten the tissue before microstructure characterisation. A method was developed to use the microstructure data obtained for the dissected tissue to build realistic 3D maps of fibril density and orientation covering the whole eye globe. At the central cornea, 61.5±2.3% of fibrils were aligned within 45° sectors surrounding the two orthogonal directions. In contrast, more than one-third of the total fibril content was concentrated along the circumferential direction at the limbus (37.0±2.4%) and around the optic nerve head (34.8±2.1%). The insertion locations of the four recti muscles exhibited a preference in the meridional direction near the equator (38.6±3.9%). There was also a significant difference in fibril density between the limbus and other regions (ratio = 1.91±0.45, p <0.01 at the central cornea and ratio = 0.80±0.21, p <0.01 at the posterior pole). Characterisation of collagen fibril density and orientation across the whole ocular surface has been possible but required the use of a technique that involved tissue dissection and hence caused tissue damage. The method presented in this paper aimed to minimise the effect of dissection on the quality of obtained data and was successful in identifying fibril distribution trends that were compatible with earlier studies, which concentrated on localised areas of the ocular globe.


Assuntos
Colágeno/química , Colágeno/ultraestrutura , Olho/química , Olho/ultraestrutura , Fenômenos Fisiológicos Oculares , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Simulação por Computador , Dissecação/métodos , Humanos , Imageamento Tridimensional , Técnicas In Vitro , Pessoa de Meia-Idade , Modelos Biológicos , Difração de Raios X
4.
J R Soc Interface ; 16(154): 20180685, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31039694

RESUMO

This paper aims to present a novel full-eye biomechanical material model that incorporates the characteristics of ocular tissues at microstructural level, and use the model to analyse the age-related stiffening in tissue behaviour. The collagen content in ocular tissues, as obtained using X-ray scattering measurements, was represented by sets of Zernike polynomials that covered both the cornea and sclera, then used to reconstruct maps of collagen fibril magnitude and orientation on the three-dimensional geometry of the eye globe. Fine-mesh finite-element (FE) models with eye-specific geometry were built and supported by a user-defined material model (UMAT), which considered the regional variation of fibril density and orientation. The models were then used in an iterative inverse modelling study to derive the material parameters that represent the experimental behaviour of ocular tissues from donors aged between 50 and 90 years obtained in earlier ex vivo studies. Sensitivity analysis showed that reducing the number of directions that represented the anisotropy of collagen fibril orientation at each X-ray scattering measurement point from 180 to 16 would have limited and insignificant effect on the FE solution (0.08%). Inverse analysis resulted in material parameters that provided a close match with experimental intraocular pressure-deformation behaviour with a root mean square of error between 3.6% and 4.3%. The results also demonstrated a steady increase in mechanical stiffness in all ocular regions with age. A constitutive material model based on distributions of collagen fibril density and orientation has been developed to enable the accurate representation of the biomechanical behaviour of ocular tissues. The model offers a high level of control of stiffness and anisotropy across ocular globe, and therefore has the potential for use in planning surgical and medical procedures.


Assuntos
Colágeno/química , Córnea/química , Esclera/química , Idoso , Idoso de 80 Anos ou mais , Anisotropia , Fenômenos Biomecânicos , Humanos , Pessoa de Meia-Idade
5.
Biomech Model Mechanobiol ; 17(1): 19-29, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28780705

RESUMO

A constitutive model based on the continuum mechanics theory has been developed which represents interlamellar cohesion, regional variation of collagen fibril density, 3D anisotropy and both age-related viscoelastic and hyperelastic stiffening behaviour of the human cornea. Experimental data gathered from a number of previous studies on 48 ex vivo human cornea (inflation and shear tests) enabled calibration of the constitutive model by numerical analysis. Wide-angle X-ray scattering and electron microscopy provided measured data which quantify microstructural arrangements associated with stiffness. The present study measures stiffness parallel to the lamellae of the cornea which approximately doubles with an increase in strain rate from 0.5 to 5%/min, while the underlying stromal matrix provides a stiffness 2-3 orders of magnitude lower than the lamellae. The model has been simultaneously calibrated to within 3% error across three age groups ranging from 50 to 95 years and three strain rates across the two loading scenarios. Age and strain-rate-dependent material coefficients allow numerical simulation under varying loading scenarios for an individual patient with material stiffness approximated by their age. This present study addresses a significant gap in numerical representation of the cornea and has great potential in daily clinical practice for the planning and optimisation of corrective procedures and in preclinical optimisation of diagnostic procedures.


Assuntos
Córnea/fisiologia , Elasticidade , Modelos Biológicos , Idoso de 80 Anos ou mais , Anisotropia , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA