Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Phys Chem Chem Phys ; 23(39): 22283-22297, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34585692

RESUMO

The synthesis and characterization of four new tetracyanobutadiene (TCBD) derivatives (1, 3c and 4b-c) incorporating tosylamido and 4-triphenylamino moieties are reported. Along with those of five closely related or differently branched TCBDs derivatives (2, 3a-b, 4c and 5), their linear and (third-order) nonlinear optical properties were investigated by electronic absorption spectroscopy and Z-scan measurements. Among these compounds, the tri-branched compounds 3c and 5 are the most active two-photon absorbers, with effective cross-sections of 275 and 350 GM at 900 nm, respectively. These properties are briefly discussed with the help of DFT calculations, focussing on structural and electronic factors, and contextualized with results obtained previously for related compounds.

2.
Chemistry ; 22(15): 5128-32, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26868979

RESUMO

Permutational isomers of trigonal bipyramidal [W2RhIr2(CO)9(η(5)-C5H5)2(η(5)-C5HMe4)] result from competitive capping of either a W2Ir or a WIr2 face of the tetrahedral cluster [W2Ir2(CO)10(η(5)-C5 H5)2] from its reaction with [Rh(CO)2(η(5)-C5HMe4)]. The permutational isomers slowly interconvert in solution by a cluster metal vertex exchange that is proposed to proceed by Rh-Ir and Rh-W bond cleavage and reformation, and via the intermediacy of an edge-bridged tetrahedral transition state. The permutational isomers display differing chemical and physical properties: replacement of CO by PPh3 occurs at one permutational isomer only, while the isomers display distinct optical power limiting behavior.

3.
Phys Chem Chem Phys ; 18(23): 15719-26, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27225829

RESUMO

Carbazole-carborane linear dyads and di(carbazole)-carborane V-shaped dyads with phenyleneethynylene-based bridges have been synthesized. The V-shaped dyads display the expected red-shifts in the location of their UV-Vis absorption maxima on bridge-lengthening, but show unusual blue-shifts in charge-transfer (CT) emission on the same π-system lengthening. These blue-shifts can be attributed to the 2n + 3 electron count within the carborane cluster in the excited state. The linear dyads luminesce via a combination of local excited (LE) and CT emission, with a red-shift in LE emission and a blue-shift in CT emission accompanying π-bridge elongation. A quantum efficiency as high as 86% in the solution state is achieved from the hybrid LE/CT emission. Time-dependent density functional theory (TD-DFT) calculations at the excited state of these compounds have clarified the photoluminescence blue-shift and suggested a typical cluster C-C bond elongation in the V-shaped dyads. Calculations on the elongated linear dyads have suggested that the electron density is localized at the phenyleneethynylene-containing bridge.

4.
Chemistry ; 21(18): 6949-56, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25783772

RESUMO

1,3,6,8-Tetra-tert-butylcarbazol-9-yl and 1,8-diaryl-3,6-di(tert-butyl)carbazol-9-yl ligands have been utilized in the synthesis of potassium and magnesium complexes. The potassium complexes (1,3,6,8-tBu4carb)K(THF)4 (1; carb = C12H4N), [(1,8-Xyl2-3,6-tBu2carb)K(THF)]2 (2; Xyl = 3,5-Me2C6H3) and (1,8-Mes2-3,6-tBu2carb)K(THF)2 (3; Mes = 2,4,6-Me3C6H2) were reacted with MgI2 to give the Hauser bases 1,3,6,8-tBu4carbMgI(THF)2 (4) and 1,8-Ar2-3,6-tBu2carbMgI(THF) (Ar = Xyl 5, Ar = Mes 6). Structural investigations of the potassium and magnesium derivatives highlight significant differences in the coordination motifs, which depend on the nature of the 1- and 8-substituents: 1,8-di(tert-butyl)-substituted ligands gave π-type compounds (1 and 4), in which the carbazolyl ligand acts as a multi-hapto donor, with the metal cations positioned below the coordination plane in a half-sandwich conformation, whereas the use of 1,8-diaryl substituted ligands gave σ-type complexes (2 and 6). Space-filling diagrams and percent buried volume calculations indicated that aryl-substituted carbazolyl ligands offer a steric cleft better suited to stabilization of low-coordinate magnesium complexes.

5.
Chemistry ; 21(33): 11843-54, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26179471

RESUMO

The synthesis of fac-[Ir{N,C1'-(2,2'-NC5H4C6H3-5'-C≡C-1-C6H2-3,5-Et2-4-C≡CC6H4-4-C≡CH)}3] (10), which bears pendant ethynyl groups, and its reaction with [RuCl(dppe)2]PF6 to afford the heterobimetallic complex fac-[Ir{N,C1'-(2,2'-NC5H4C6H3-5'-C≡C-1-C6H2-3,5-Et2-4-C≡CC6H4-4-C≡C-trans-[RuCl(dppe)2])}3] (11) is described. Complex 10 is available from the two-step formation of iodo-functionalized fac-tris[2-(4-iodophenyl)pyridine]iridium(III) (6), followed by ligand-centered palladium-catalyzed coupling and desilylation reactions. Structural studies of tetrakis[2-(4-iodophenyl)pyridine-N,C1'](µ-dichloro)diiridium 5, 6, fac-[Ir{N,C1'-(2,2'-NC5H4C6H3-5'-C≡C-1-C6H2-3,5-Et2-4-C≡CH)}3] (8), and 10 confirm ligand-centered derivatization of the tris(2-phenylpyridine)iridium unit. Electrochemical studies reveal two (5) or one (6­10) Ir-centered oxidations for which the potential is sensitive to functionalization at the phenylpyridine groups but relatively insensitive to more remote derivatization. Compound 11 undergoes sequential Ru-centered and Ir-centered oxidation, with the potential of the latter significantly more positive than that of Ir(N,C'-NC5H4-2-C6H4-2)3. Ligand-centered π­π* transitions characteristic of the Ir(N,C'-NC5H4-2-C6H4-2)3 unit red-shift and gain in intensity following the iodo and alkynyl incorporation. Spectroelectrochemical studies of 6, 7, 9, and 11 reveal the appearance in each case of new low-energy LMCT bands following formal IrIII/IV oxidation preceded, in the case of 11, by the appearance of a low-energy LMCT band associated with the formal RuII/III oxidation process. Emission maxima of 6­10 reveal a red-shift upon alkynyl group introduction and arylalkynyl π-system lengthening; this process is quenched upon incorporation of the ligated ruthenium moiety on proceeding to 11. Third-order nonlinear optical studies of 11 were undertaken at the benchmark wavelengths of 800 nm (fs pulses) and 532 nm (ns pulses), the results from the former suggesting a dominant contribution from two-photon absorption, and results from the latter being consistent with primarily excited-state absorption.

6.
Chemistry ; 19(34): 11446-53, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23852994

RESUMO

The synthesis and characterization of the first series of low-coordinate bis(terphenyl) complexes of the Group 12 metals, [Zn(2,6-Naph2 C6 H3 )2 ] (1), [Cd(OEt2 )(2,6-Naph2 C6 H3 )2 ] (2) and [Hg(OEt2 )(2,6-Naph2 C6 H3 )2 ] (3) (Naph=1-C10 H7 ) are described. The naphthyl substituents of the terphenyl ligands confer considerable steric bulk, and as a result of limited flexibility introduce multiple conformations to these unusual systems. In the solid state, complex 1 features a two-coordinate Zn centre with the ligands oriented in a syn/anti conformation, whereas the three-coordinate distorted T-shaped complexes 2 and 3 feature the ligands in the syn/syn configurations. The results of DFT calculations are in good agreement with the solid-state configurations for these complexes and support the spectroscopic measurements, which indicate several conformers in solution.

7.
Inorg Chem ; 52(21): 12429-39, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24134546

RESUMO

The synthesis and characterization of magnesium and calcium complexes of sterically demanding aminopyridinato ligands is reported. The reaction of the 2-Me3SiNH-6-MeC5H3N (L(1)H), 2-MePh2SiNH-6-MeC5H3N (L(2)H), and 2-Me3SiNH-6-PhC5H3N (L(3)H) with KH in tetrahydrofuran (THF) yielded potassium salts L(1)K(thf)0.5 (1), L(2)K (2), and L(3)K(thf)0.5 (3), which, through subsequent reaction with MgI2 and CaI2, afforded the homoleptic complexes (L)2Ae(thf)n [L = L(1), Ae = Mg, n = 1 (4); L = L(2), Ae = Mg, n = 0 (5); L = L(3), Ae = Mg, n = 0 (6); L = L(2), Ae = Ca, n = 2 (7)] and heterobimetallic calciates {[(L)3Ca]K}∞ [L = L(1) (8); L = L(2) (9)]. The solid state structure of 8 reveals a polymeric arrangement in which the calciate units are interlocked by bridging potassium ions. Metalation reactions between L(1)H or L(2)H and ((n)Bu)2Mg lead to the solvent-free compounds (L)2Mg [L = L(1) (10); L = L(2) (5)]. The bridged butyl mixed-metal complex [(L(1))Li(µ2-(n)Bu)Mg(L(1))]∞ (11) was also obtained via a cocomplexation reaction with (n)BuLi and ((n)Bu)2Mg. 11, which adopts a monodimensional polymeric array in the solid state, is a rare example of an alkyl-bridged Li/Mg complex and the first complex to feature an unsupported bridging butyl interaction between two metals. Changing the cocomplexation reaction conditions, the order of reagents added to the reactions mixture, and with the use of a coordinating solvent (tetrahydrofuran) formed the magnesiate complex (L(1))3MgLi(thf) (12).


Assuntos
Aminopiridinas/química , Cálcio/química , Magnésio/química , Técnicas de Química Sintética , Complexos de Coordenação , Cristalografia por Raios X , Ligantes , Estrutura Molecular , Compostos Organometálicos/química , Solventes
8.
Inorg Chem ; 52(5): 2678-83, 2013 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-23409752

RESUMO

The solid state structures of alkali metal complexes of the 1,3,6,8-tetra-tert-butylcarbazol-9-yl ((t)Bu4carb(-)) ligand are compared. Lithium complex [(t)Bu4carbLi]2 ([1]2) is a dimer in the solid state featuring a planar LiNLiN rhomboid ring, with the differing Li-N distances within the ring due to the effects of σ- and π-interactions. Recrystallization of lithium, sodium, and potassium complexes of the 1,3,6,8-tetra-tert-butylcarbazol-9-yl ligand from THF leads to the formation of (t)Bu4carbLi(THF)2 (1·2THF), (t)Bu4carbNa(THF)3 (2·3THF), and (t)Bu4carbK(THF)4 (3·4THF), respectively, in the solid state. For these THF adducts, on proceeding from lithium to sodium to potassium there is an increase in hapticity of the binding of the carbazol-9-yl ligands to the metal cations, mirroring the increasing ionic bonding character in these compounds.


Assuntos
Carbazóis/química , Metais Alcalinos/química , Compostos Organometálicos/química , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química
9.
Inorg Chem ; 52(19): 11256-68, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24059344

RESUMO

Metal cluster core expansion at tetrahedral group 6-group 9 mixed-metal clusters MIr3(µ-CO)3(CO)8(η(5)-L) (M = W, Mo, L = C5H5; M = Mo, L = C5Me5) with the iridium capping reagents Ir(CO)2(η(5)-L') (L' = C5Me5, C5Me4H) in refluxing toluene afforded the trigonal-bipyramidal clusters MIr4(µ-CO)3(CO)7(η(5)-C5H5)(η(5)-L') (M = Mo, L' = C5Me5, 1a; M = W, L' = C5Me5, 1b; M = Mo, L' = C5Me4H, 1c; M = W, L' = C5Me4H, 1d) and MoIr4(µ3-H)(µ-CO)2(µ-η(1):η(5)-CH2C5Me4)(CO)7(η(5)-C5Me5) (2). Related reactions with M2Ir2(µ-CO)3(CO)7(η(5)-L)2 (M = W, Mo, L = C5H5; M = Mo, L = C5Me5) afforded M2Ir3(µ-CO)3(CO)6(η(5)-C5H5)2(η(5)-L') (M = Mo, L' = C5Me5, 3a; M = W, L' = C5Me5, 3b; M = Mo, L' = C5Me4H, 3c; M = W, L' = C5Me4H, 3d), W2Ir3(µ-CO)4(CO)5(η(5)-C5H5)2(η(5)-C5Me4H) (4), and Mo2Ir3(µ-CO)3(CO)6(η(5)-C5Me5)3 (5). Single-crystal X-ray diffraction studies of 1a-1d, 2, 3a-3d, and 4 confirmed their molecular structures, including the µ-η(1):η(5)-CH2C5Me4 ligand at hydrido cluster 2, derived from a C-H bond activation of one of the methyl groups. Density functional theory (DFT) studies were employed to suggest the structure of 5. The redox behavior of the new clusters was examined through cyclic voltammetry; all clusters exhibit oxidation and reduction processes (with respect to the resting state), with the oxidation processes being the more reversible, and increasingly so on decreasing Ir content of the clusters, replacing W by Mo, and increasing alkylation of the cyclopentadienyl ligands. In situ IR and UV-vis-near-IR spectroelectrochemical studies of the reversible oxidation processes in 1a and 3a were undertaken, with the spectra of the former suggesting progression to an all-terminal CO geometry concomitant with the first oxidation and a significant structural change upon the second oxidation step. DFT studies of 1a revealed that its crystallographically-confirmed Mo-equatorial core geometry is essentially isoenergetic with a possible Mo-apical isomer, and identified several bridging CO structures for the charged states.

10.
Acta Crystallogr C ; 66(Pt 8): m204-6, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20679705

RESUMO

The solid-state structure of the title compound, [Na(2)Mn(2)(C(32)H(56)N(2)OSi(2))(2)O(2)] or [1,8-C(10)H(6)(NSi(i)Pr(3))(2)Mn(mu(3)-O)Na(THF)](2), which lies across a crystallographic twofold axis, exhibits a central [Mn(2)O(2)Na(2)](4+) core, with two oxide groups, each triply bridging between the two Mn(III) ions and an Na(+) ion. Additional coordination is provided to each Mn(III) centre by a 1,8-C(10)H(6)(NSi(i)Pr(3))(2) [1,8-bis(triisopropylsilylamido)naphthalene] ligand and to the Na(+) centres by a tetrahydrofuran molecule. The presence of an additional Na...H-C agostic interaction potentially contributes to the distortion around the bridging oxide group.


Assuntos
Complexos de Coordenação/química , Furanos/química , Manganês/química , Compostos de Organossilício/química , Cristalografia por Raios X , Ligantes , Estrutura Molecular , Temperatura
11.
Chemistry ; 15(22): 5503-19, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19360834

RESUMO

Treatment of a rare earth metal (Ln) and a potential divalent rare earth metal (Ln') or an alkaline earth metal (Ae) with 2,6-diphenylphenol (HOdpp) at elevated temperatures (200-250 degrees C) afforded heterobimetallic aryloxo complexes, which were structurally characterised. A charge-separated species [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] was obtained for a range of metals, demonstrating the similarities between the chemistry of the divalent rare earth metals and the alkaline earth metals. The [(Ln'/Ae)(2)(Odpp)(3)](+) cation in the heterobimetallic structures is unusual in that it consists solely of bridging aryloxide ligands. A molecular heterobimetallic species [AeEu(Odpp)(4)] (Ae = Ca, Sr, Ba) was obtained by treating an alkaline earth metal and Eu metal with HOdpp at elevated temperatures. Similarly, [BaSr(Odpp)(4)] was prepared by treating Ba metal and Sr metal with HOdpp. Treatment of [Ba(2)(Odpp)(4)] with [Mg(Odpp)(2)(thf)(2)] in toluene afforded [Ba(2)(Odpp)(3)][Mg(Odpp)(3)(thf)]. Analogous solution-based syntheses were not possible for [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] complexes, for which the free-metal route was essential. As a result of the absence of additional donor ligands, the crystal structures of the heterobimetallic complexes feature extensive pi-Ph-metal interactions involving the pendant phenyl groups of the Odpp ligands, thus enabling the large electropositive metal atoms to attain coordination saturation. The charge-separated heterobimetallic species were purified by extraction with toluene/thf mixtures at ambient temperature (Ba-containing compounds) or by extraction with toluene under pressure above the boiling point of the solvent (other products). In donor solvents, heterobimetallic complexes other than those containing barium were found to fragment into homometallic species.

12.
Inorg Chem ; 48(22): 10837-44, 2009 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-19824653

RESUMO

Four low-coordinate transition metal amido complexes featuring sterically demanding 1,8-bis(silylamido)naphthalene ligands are reported. Reaction of one molar equivalent of 1,8-C(10)H(6)(NLiSiMe(3))(2) with ZnCl(2) yields the structurally authenticated dimer [1,8-C(10)H(6)(NSiMe(3))(2)Zn](2) (1), where the 1,8-bis(silylamido)naphthalene moiety is acting as both a chelating and bridging ligand. The effect on the resulting transition metal complexes of increasing the steric demands of the ligand was investigated, using the triisopropylsilyl-substituted ligand 1,8-C(10)H(6)(NSi(i)Pr(3))(2). Reaction of one molar equivalent of 1,8-C(10)H(6)(NLiSi(i)Pr(3))(2) with ZnCl(2) or FeCl(2)(THF)(1.5) yields 1,8-C(10)H(6)(NSi(i)Pr(3))(2)M(mu-Cl)Li(THF)(3) (M = Zn, 2; M = Fe, 3), respectively; the coordination of the ClLi(THF)(3) moiety to the metal center in these compounds is a rare structural motif in the coordination chemistry of the d-block elements. Analogous reaction of 1,8-C(10)H(6)(NLiSi(i)Pr(3))(2) with MnCl(2) affords the mixed-metal Li-Mn-amido complex 1,8-C(10)H(6)(NSi(i)Pr(3))(2)Li(THF)MnCl(THF) (4) which features an unusual LiMnN(2) core.

13.
Dalton Trans ; 48(33): 12549-12559, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31367717

RESUMO

o-Carboranes C-functionalized by (4-substituted-phen-1-yl)ethynyl-1,4-phenyl groups or (2-substituted-fluoren-7-yl)ethynyl-2,7-fluorenyl groups, in which the pendant functionalization is electron-withdrawing nitro or electron-donating diphenylamino groups, have been synthesized and in many cases structurally characterized. Diphenylamino-containing examples coupled via the two π-delocalizable bridges to the electron-accepting o-carborane unit exhibit the greater quadratic optical nonlinearities at 1064 nm (hyper-Rayleigh scattering, ns pulses), the nonlinearities also increasing on proceeding from 1,4-phenylene- to 2,7-fluorenylene-containing bridge. The most NLO-efficient example 2-(n-butyl)-1-(2-((9,9-di(n-butyl)-2-(N,N-diphenylamino)-9H-fluoren-7-yl)ethynyl)-9,9-di(n-butyl)-9H-fluoren-7-yl)-1,2-ortho-carborane, consisting of diphenylamino donor, fluorenyl-containing bridge, o-carborane acceptor, and solubilizing n-butyl units, exhibits large 〈ß〉HRS (230 × 10-30 esu) and frequency-independent (two-level model) 〈ß0〉 (96 × 10-30 esu) values. Coupling two (2-((9,9-di(n-butyl)-2-(N,N-diphenylamino)-9H-fluoren-7-yl)ethynyl)-9,9-di(n-butyl)-9H-fluoren-7-yl) units to the 1,2-ortho-carborane core affords a di-C-functionalized compound with enhanced nonlinearities (309 × 10-30 esu and 129 × 10-30 esu, respectively).

14.
Chempluschem ; 83(7): 630-642, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31950624

RESUMO

The syntheses of oligo(p-phenylene ethynylene)s (OPEs) end-functionalized by a nitro acceptor group and with a ligated ruthenium unit at varying locations in the OPE chain, namely, trans-[Ru{(C≡C-1,4-C6 H4 )n NO2 }(C≡CR)(dppe)2 ] (dppe=1,2-bis(diphenylphosphino)ethane; n=1, R=1,4-C6 H4 C≡C-1,4-C6 H4 C≡CPh, 1,4-C6 H4 NEt2 ; n=2, R=Ph, 1,4-C6 H4 C≡CPh, 1,4-C6 H4 C≡C-1,4-C6 H4 C≡CPh, 1,4-C6 H4 NO2 , 1,4-C6 H4 NEt2 ; n=3, R=Ph, 1,4-C6 H4 C≡CPh), are reported. Their electrochemical properties were assessed by cyclic voltammetry, their linear optical properties and quadratic and cubic nonlinear optical properties were assayed by UV/Vis/NIR spectroscopy, hyper-Rayleigh scattering studies employing nanosecond pulses at 1064 nm, and broad spectral range Z-scan studies employing femtosecond pulses, respectively, and their linear optical properties and vibrational spectroscopic behavior in the formally RuIII state was examined by UV/Vis/NIR and IR spectroelectrochemistry, respectively. The potentials of the metal-localized oxidation processes are sensitive to alkynyl-ligand modification, but this effect is attenuated on π-bridge lengthening. Computational studies employing time-dependent density functional theory were undertaken on model complexes, with a 2D scan revealing a soft potential-energy surface for intra-alkynyl-ligand aryl-ring rotation; this is consistent with the experimentally observed blueshift in optical absorption maxima. Quadratic optical nonlinearities are significant and cubic NLO coefficients for these small complexes are small. The optimum length of the alkynyl ligands and the ideal metal location in the OPE to maximize the key coefficients have been defined.

15.
Dalton Trans ; 47(13): 4560-4571, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29513311

RESUMO

1-Nitronaphthalenyl-4-alkynyl and 9-nitroanthracenyl-10-alkynyl complexes [M](C[triple bond, length as m-dash]C-4-C10H6-1-NO2) ([M] = trans-[RuCl(dppe)2] (6b), trans-[RuCl(dppm)2] (7b), Ru(PPh3)2(η5-C5H5) (8b), Ni(PPh3)(η5-C5H5) (9b), Au(PPh3) (10b)) and [M](C[triple bond, length as m-dash]C-10-C14H8-9-NO2) ([M] = trans-[RuCl(dppe)2] (6c), trans-[RuCl(dppm)2] (7c), Ru(PPh3)2(η5-C5H5) (8c), Ni(PPh3)(η5-C5H5) (9c), Au(PPh3) (10c)) were synthesized and their identities were confirmed by single-crystal X-ray diffraction studies. Electrochemical studies and a comparison to the 1-nitrophenyl-4-alkynyl analogues [M](C[triple bond, length as m-dash]C-4-C6H4-1-NO2) ([M] = trans-[RuCl(dppe)2] (6a), trans-[RuCl(dppm)2] (7a), Ru(PPh3)2(η5-C5H5) (8a), Ni(PPh3)(η5-C5H5) (9a), Au(PPh3) (10a)) reveal a decrease in oxidation potential for ruthenium and nickel complexes on proceeding from the phenyl- to naphthalenyl- and then anthracenyl-containing bridge. HOMO → LUMO transitions characteristic of MC[triple bond, length as m-dash]C-1-C6H4 to 4-C6H4-1-NO2 charge transfer red-shift and gain in intensity on proceeding to the ruthenium complexes; the low-energy transitions have increasing ILCT character on proceeding from the phenyl- to naphthalenyl- and then anthracenyl-containing bridge. Spectroelectrochemical studies of the Ru-containing complexes reveal the appearance of low-energy bands corresponding to chloro-to-RuIII charge transfer that red-shift on proceeding from the phenyl- to naphthalenyl- and then anthracenyl-containing bridge. Second-order nonlinear optical (NLO) studies at 1064 nm employing ns pulses and the hyper-Rayleigh scattering technique reveal an increase in quadratic optical nonlinearity upon introduction of metal to the precursor alkyne to afford alkynyl complexes and on proceeding from ligated-gold to -nickel and then to -ruthenium for a fixed alkynyl ligand. Quadratic NLO data of the gold complexes optically transparent at the second-harmonic wavelength reveal an increase in ßHRS on proceeding from the phenyl- to the naphthalenyl-containing complex. Broad spectral range third-order nonlinear optical studies employing fs pulses and the Z-scan technique reveal an increase in two-photon absorption cross-section on replacing ligated-gold by -nickel and then -ruthenium for a fixed alkynyl ligand. Computational studies undertaken using time-dependent density functional theory have been employed to assign the nature of the key optical transitions and suggest that the significant optical nonlinearities observed for the ruthenium-containing complexes correlate with the low-energy formally Ru → NO2 band which possesses strong MLCT character, while the more moderate nonlinearities of the gold complexes correlate with a band higher in energy that is primarily ILCT in character.

16.
Dalton Trans ; 46(12): 4101-4110, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28276554

RESUMO

The reactions between magnesium or zinc alkyls and 1,8-bis(triorganosilyl)diaminonaphthalenes afford the 1,8-bis(triorganosilyl)diamidonaphthalene complexes with elimination of alkanes. The reaction between 1,8-C10H6(NSiMePh2H)2 and one or two equivalents of MgnBu2 affords two complexes with differing coordination environments for the magnesium; the reaction between 1,8-C10H6(NSiMePh2H)2 and MgnBu2 in a 1 : 1 ratio affords 1,8-C10H6(NSiMePh2)2{Mg(THF)2} (1), which features a single magnesium centre bridging both ligand nitrogen donors, whilst treatment of 1,8-C10H6(NSiR3H)2 (R3 = MePh2, iPr3) with two equivalents of MgnBu2 affords the bimetallic complexes 1,8-C10H6(NSiR3)2{nBuMg(THF)}2 (R3 = MePh22, R3 = iPr33), which feature four-membered Mg2N2 rings. Similarly, 1,8-C10H6(NSiiPr3)2{MeMg(THF)}2 (4) and 1,8-C10H6(NSiMePh2)2{ZnMe}2 (5) are formed through reactions with the proligands and two equivalents of MMe2 (M = Mg, Zn). The reaction between 1,8-C10H6(NSiMePh2H)2 and two equivalents of MeMgX affords the bimetallic complexes 1,8-C10H6(NSiMePh2)2(XMgOEt2)2 (X = Br 6; X = I 7). Very small amounts of [1,8-C10H6(NSiMePh2)2{IMg(OEt2)}]2 (8), formed through the coupling of two diamidonaphthalene ligands at the 4-position with concomitant dearomatisation of one of the naphthyl arene rings, were also isolated from a solution of 7.

17.
Chempluschem ; 81(7): 613-620, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31968713

RESUMO

The syntheses of oligo(p-phenylenevinylene)s (OPVs) end-functionalized with a ligated ruthenium alkynyl unit as a donor and a nitro as acceptor, namely trans-[Ru{C≡C-1-C6 H4 -4-(E)-CH=CH-1-C6 H2 -2,5-Et2 -4-(E)-CH=CH-1-C6 H2 -2,5-Et2 -4-(E)-CH=CH-1-C6 H4 -4-NO2 }Cl(dppe)2 ] (Ru4), trans-[Ru{C≡C-1-C6 H4 -4-(E)-CH=CH-1-C6 H2 -2,5-Et2 -4-(E)-CH=CH-1-C6 H2 -2,5-Et2 -4-(E)-CH=CH-1-C6 H2 -2,5-(n-hexyl)2 -4-(E)-CH=CH-1-C6 H2 -2,5-(n-hexyl)2 -4-(E)-CH=CH-1-C6 H4 -4-NO2 }Cl(dppe)2 ] (Ru6), and trans-[Ru{C≡C-1-C6 H4 -4-(E)-CH=CH-1-C6 H2 -2,5-Et2 -4-(E)-CH=CH-1-C6 H2 -2,5-Et2 -4-(E)-CH=CH-1-C6 H2 -2,5-(n-hexyl)2 -4-(E)-CH=CH-1-C6 H2 -2,5-(n-hexyl)2 -4-(E)-CH=CH-1-C6 H2 -2,5-(2-ethyl-n-hexyl)2 -4-(E)-CH=CH-1-C6 H2 -2,5-(2-ethyl-n-hexyl)2 -4-(E)-CH=CH-1-C6 H4 -4-NO2 }Cl(dppe)2 ] (Ru8), are reported, together with those of precursor alkynes. Their electrochemical properties were assessed by cyclic voltammetry (CV), their linear optical and quadratic nonlinear optical (NLO) properties assayed by UV/Vis-NIR spectroscopy and hyper-Rayleigh scattering studies at 1064 nm, respectively, and their linear optical properties in the formally RuIII state examined by UV/Vis-NIR spectroelectrochemistry. Computational studies employing time-dependent density functional theory were undertaken on model complexes to rationalize the optical observations.

18.
Chempluschem ; 81(7): 621-628, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31968722

RESUMO

The syntheses of trans-[Ru(C≡C-1-C6 H4 -4-N=N-1-C6 H4 -4-C≡C-1-C6 H4 -4-NO2 )Cl(L2 )2 ] (L2 =dppm (Ru1), dppe) (Ru2)), trans-[Ru(C≡C-1-C6 H4 -4-N=N-1-C6 H4 -4-(E)-CH=CH-1-C6 H4 -4-NO2 )Cl(dppe)2 ] (Ru3), and trans-[Ru(C≡C-1-C6 H4 -4-(E)-CH=CH-1-C6 H2 -2,6-Et2 -4-N=N-1-C6 H4 -4-NO2 )Cl(dppe)2 ] (Ru4) are reported, together with those of precursor alkynes. Their electrochemical properties were assessed by cyclic voltammetry (CV), linear optical and quadratic nonlinear optical (NLO) properties assayed by UV/Vis-NIR spectroscopy and hyper-Rayleigh scattering studies at 1064 nm, respectively, and their linear optical properties in the formally RuIII state examined by UV/Vis-NIR spectroelectrochemistry. These data were compared to those of analogues with E-ene and yne linkages in place of the azo groups. Computational studies using time-dependent density functional theory were undertaken on model compounds (Ru2'-Ru4') to rationalize the optical behaviour of the experimental complexes.

19.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 5): o309-10, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25995920

RESUMO

The title compound, C18H19I, crystallized with two independent mol-ecules (A and B) in the asymmetric unit. Both mol-ecules have an E conformation about the bridging C=C bond. They differ in the orientation of the two benzene rings; the dihedral angle being 12.3 (5)° in mol-ecule A, but only 1.0 (6)° in mol-ecule B. In the crystal, the individual mol-ecules are linked by C-I⋯π inter-actions forming zigzag A and zigzag B chains propagating along [001]. The structure was refined as an inversion twin [Flack parameter = 0.48 (2)].

20.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 5): o311-2, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25995921

RESUMO

In the title compound, C15H15NO2Si, the dihedral angle between the nitro group and the mean plane of the naphthalene system is 22.04 (11)°. In the crystal, π-π inter-actions generate supra-molecular chains propagating along the a-axis direction; the centroid-to-centroid distances range from 3.5590 (12) to 3.8535 (12) Å.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA