Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Am Chem Soc ; 146(20): 14149-14156, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717984

RESUMO

The technology of liquid organic hydrogen carriers presents great promise for large-scale hydrogen storage. Nevertheless, the activation of inert C(sp3)-H bonds in hydrocarbon carriers poses formidable challenges, resulting in a sluggish dehydrogenation process and necessitating high operating temperatures. Here, we break the shackles of C-H bond activation under visible light irradiation by fabricating subnanometer Pt clusters on defective Ce-Zr solid solutions. We achieved an unprecedented hydrogen production rate of 2601 mmol gcat.-1 h-1 (turnover frequency >50,000 molH2 molPt-1 h-1) from cyclohexane, surpassing the most advanced thermo- and photocatalysts. By optimizing the temperature-dominated hydrogen transfer process, achievable by harnessing hitherto wasted infrared light in sunlight, an astonishing 56% apparent quantum efficiency and a 5.2% solar-to-hydrogen efficiency are attained at 353 K. Our research stands as one of the most effective photocatalytic processes to date, holding profound practical significance in the utilization of solar energy and the exploitation of alkanes.

2.
Angew Chem Int Ed Engl ; 62(26): e202303629, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37103334

RESUMO

The ambient ammonia synthesis coupled with distributed green hydrogen production technology can provide promising solutions for low-carbon NH3 production and H2 storage. Herein, we reported Ru-loaded defective pyrochlore K2 Ta2 O6-x with remarkable visible-light absorption and a very low work function, enabling effective visible-light-driven ammonia synthesis from N2 and H2 at low pressure down to 0.2 atm. The photocatalytic rate was 2.8 times higher than that of the best previously reported photocatalyst and the photo-thermal rate at 425 K was similar to that of Ru-loaded black TiO2 at 633 K. Compared to perovskite-type KTaO3-x with the same composition, the pyrochlore exhibited a 3.7-fold increase in intrinsic activity due to a higher photoexcited charge separation efficiency and a higher conduction band position. The interfacial Schottky barrier and spontaneous electron transfer between K2 Ta2 O6-x and Ru further improve photoexcited charge separation and accumulate energetic electrons to facilitate N2 activation.


Assuntos
Amônia , Carbono , Transporte de Elétrons , Elétrons
3.
Inorg Chem ; 61(17): 6469-6479, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35436094

RESUMO

A series of new zirconium complexes bearing bulkier amine bis(phenolate) tetradentate ligands, Me2NCH2CH2N{CH2(2-O-3-R-5-tBu-C6H2)}2ZrCl2 [R = CPhMe2 (1); CMePh2 (2); CPh3 (3); Ph (4); 3,5-Me2C6H3 (5); 3,5-tBu2C6H3 (6); 4-tBuC6H4 (7)], were synthesized and characterized by 1H nuclear magnetic resonance (NMR), 13C NMR, and elemental analyses. The molecular structures of complexes 1 and 3 were determined by single-crystal X-ray diffraction analysis. The X-ray crystallography analysis reveals that these complexes display a slightly distorted octahedral geometry around their metal centers. Upon activation with methylaluminoxane (MAO), dry-MAO, MAO/butylated hydroxytoluene (BHT), or AliBu3/CPh3B(C6F5)4, these zirconium complexes exhibit high catalytic activity for ethylene polymerization [up to 1.07 × 107 g PE (mol Zr)-1 h-1] and ethylene/1-hexene copolymerization [up to 2.78 × 107 g polymer (mol Zr)-1 h-1], affording (co)polymers with moderate to high molecular weights and good comonomer incorporations. The zirconium complexes with bulkier R groups show higher catalytic activities and longer lifetimes and produce polymers with higher molecular weights, while the zirconium complexes with aryls as R groups demonstrate relatively good comonomer incorporation ability for the copolymerization reactions. These catalytic systems also show moderate catalytic activities for the polymerization reactions of propylene, 1-hexene, and 1-decene. Upon activation with MAO, the zirconium complexes also show moderate catalytic activities for the copolymerization reaction of ethylene with 3-buten-1-ol (treated with 1 equiv of AliBu3), affording copolymers with the incorporation of 3-buten-1-ol up to 1.05%.

4.
Angew Chem Int Ed Engl ; 60(38): 20760-20764, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34292637

RESUMO

Achieving efficient and direct conversion of methane under mild conditions is of great significance for innovations in the chemical industry. However, the efficiency and lifetime of most catalysts remain too far from practical requirements, since it is difficult to break the first C-H bond of methane as well as to suppress the following complete dehydrogenation (or overoxidation) and the resulting carbonaceous deposition (or CO2 ). Here, we report that wurtzite GaN:ZnO solid solutions exhibit unique and unprecedented photocatalytic performances for the nonoxidative coupling of methane at room temperature, exclusively generating ethane with nearly stoichiometric H2 . High conversion rate (>330 µmol g-1 h-1 ), long-term stability (>70 h), and superior coke-resistance were achieved. At 293 K, the methane conversion exceeds 7 %, comparable to the equilibrium conversion of thermal catalysis at 910 K. Mechanistic studies revealed that the N-ZnGa -ON units and the absence of acid sites on the surface played crucial roles in reactivity and coke resistance, respectively.

5.
Angew Chem Int Ed Engl ; 56(30): 8701-8705, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28598586

RESUMO

In many heterogeneous catalysts, the interaction of supported metal species with a matrix can alter the electronic and morphological properties of the metal and manipulate its catalytic properties. III-nitride semiconductors have a unique ability to stabilize ultra-small ruthenium (Ru) clusters (ca. 0.8 nm) at a high loading density up to 5 wt %. n-Type III-nitride nanowires decorated with Ru sub-nanoclusters offer controlled surface charge properties and exhibit superior UV- and visible-light photocatalytic activity for ammonia synthesis at ambient temperature. A metal/semiconductor interfacial Schottky junction with a 0.94 eV barrier height can greatly facilitate photogenerated electron transfer from III-nitrides to Ru, rendering Ru an electron sink that promotes N≡N bond cleavage, and thereby achieving low-temperature ammonia synthesis.

6.
J Am Chem Soc ; 138(18): 5809-12, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27137478

RESUMO

We describe a simple, metal- and oxidant-free photochemical strategy for the direct trifluoromethylation of unactivated arenes and heteroarenes under either ultraviolet or visible light irradiation. We demonstrated that photoexcited aliphatic ketones, such as acetone and diacetyl, can be used as promising low-cost radical initiators to generate CF3 radicals from sodium triflinate efficiently. The broad utility of this strategy and its benefit to medicinal chemistry are demonstrated by the direct trifluoromethylation of unprotected bidentate chelating ligand, xanthine alkaloids, nucleosides, and related antiviral drug molecules.


Assuntos
Clorofluorcarbonetos de Metano/síntese química , Hidrocarbonetos Aromáticos/química , Hidrocarbonetos Aromáticos/efeitos da radiação , Acetona/química , Alcaloides/química , Antivirais/síntese química , Antivirais/química , Quelantes/química , Clorofluorcarbonetos de Metano/química , Diacetil/química , Química Verde/métodos , Indicadores e Reagentes , Cetonas/química , Ligantes , Luz , Processos Fotoquímicos , Raios Ultravioleta
7.
J Am Chem Soc ; 137(24): 7576-9, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26059734

RESUMO

Solar energy harvesting and hydrogen economy are the two most important green energy endeavors for the future. However, a critical hurdle to the latter is how to safely and densely store and transfer hydrogen. Herein, we developed a reversible hydrogen storage system based on low-cost liquid organic cyclic hydrocarbons at room temperature and atmospheric pressure. A facile switch of hydrogen addition (>97% conversion) and release (>99% conversion) with superior capacity of 7.1 H2 wt % can be quickly achieved over a rationally optimized platinum catalyst with high electron density, simply regulated by dark/light conditions. Furthermore, the photodriven dehydrogenation of cyclic alkanes gave an excellent apparent quantum efficiency of 6.0% under visible light illumination (420-600 nm) without any other energy input, which provides an alternative route to artificial photosynthesis for directly harvesting and storing solar energy in the form of chemical fuel.

8.
J Am Chem Soc ; 137(26): 8328-31, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26086314

RESUMO

The facile iodination of aromatic compounds under mild conditions is a great challenge for both organic and medicinal chemistry. Particularly, the synthesis of functionalized aryl iodides by light has long been considered impossible due to their photo-lability, which actually makes aryl iodides popular starting materials in many photo-substitution reactions. Herein, a photo-induced halogen exchange in aryl or vinyl halides has been discovered for the first time. A broad scope of aryl iodides can be prepared in high yields at room temperature under exceptionally mild conditions without any metal or photo-redox catalysts. The presence of a catalytic amount of elemental iodine could promote the reaction significantly.

9.
J Am Chem Soc ; 136(22): 7793-6, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24826797

RESUMO

As a class of key building blocks in the chemical industry, aromatic compounds are mainly derived from the catalytic reforming of petroleum-based long chain hydrocarbons. The dehydroaromatization of methane can also be achieved by using zeolitic catalysts under relatively high temperature. Herein we demonstrate that Si-doped GaN nanowires (NWs) with a 97% rationally constructed m-plane can directly convert methane into benzene and molecular hydrogen under ultraviolet (UV) illumination at rt. Mechanistic studies suggest that the exposed m-plane of GaN exhibited particularly high activity toward methane C-H bond activation and the quantum efficiency increased linearly as a function of light intensity. The incorporation of a Si-donor or Mg-acceptor dopants into GaN also has a large influence on the photocatalytic performance.

10.
Langmuir ; 30(31): 9256-60, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25069681

RESUMO

The evaporation of aqueous suspensions of cellulose nanocrystals (CNCs) gives iridescent chiral nematic films with reflection colors at visible wavelengths. A key problem is controlling the chiral nematic pitch, P, and hence the reflection colors of CNC films. By adding D-(+)-glucose to the suspension, we show that the change in P during evaporation occurs in two distinct stages. The first stage is the decrease in P as the concentration of CNC in the chiral nematic suspension increases due to evaporation; the addition of glucose causes a decrease in P at this stage. In a second stage, a concentration of CNC is reached where the formation of ordered gels and glasses prevents further major changes in P. The addition of glucose lowers the CNC concentration at which this occurs, leading to an increase in P and hence an overall shift to the red end of the spectrum in the final film.

11.
Angew Chem Int Ed Engl ; 53(51): 14106-9, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25336448

RESUMO

The thermal catalytic activity of GaN in non-oxidative alkane dehydroaromatization has been discovered for the first time. The origin of the catalytic activity was studied experimentally and theoretically. Commercially available GaN powders with a wurtzite crystal structure showed superior stability and reactivity for converting light alkanes, including methane, propane, n-butane, n-hexane and cyclohexane into benzene at an elevated temperature with high selectivity. The catalyst is highly robust and can be used repeatedly without noticeable deactivation.

12.
ACS Omega ; 9(11): 12967-12975, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524458

RESUMO

In recent years, organic materials have been increasingly studied as anode materials in lithium-ion batteries (LIBs) due to their remarkable advantages, including abundant raw materials, low prices, diverse structures, and high theoretical capacity. In this paper, three types of aromatic Schiff-base polymer materials have been synthesized and examined as anode materials in LIBs. Among them, the polymer [C6H4N = CHC6H4CH=N]n (TTD-PDA) has a continuous conjugated backbone (label as conjugated polymer), while polymers [(CH2)2N=CHC6H4CH=N]n (TTD-EDA) and [C6H4N=CH(CH2)3CH=N]n (GA-PDA) have discontinuous conjugated back-bones (label as nonconjugated polymer). The organic anodes based on TTD-PDA, TTD-EDA, and GA-PDA for LIBs are discovered to represent high reversible specific capacities of 651, 492, and 416 mAh g-1 at a current density of 100 mA g-1 as well as satisfactory rate capabilities with high capacities of 210, 90, and 178 mAh g-1 and 105, 57, and 122 mAh g-1 at current densities of 2 and 10 A g-1, indicating that these Schiff-base polymers are all promising anode materials for LIBs, which broadens the design of organic anode materials with high specific capacity, superior rate performance, and stable cycling stability.

13.
Food Chem ; 408: 135211, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36527927

RESUMO

A novel ratiometric fluorescent probe p-RPT was prepared with triphenylamine and a rhodamine derivative. The probe displays high sensitivity and selectivity for Hg2+, which was applied in real water sample detection and biologic cell imaging. Hydrogel-coated paper sensors were fabricated with p-RPT, which displayed fluorescent colour change upon Hg2+ ion contact with a detection limit of 1.2 × 10-8 M (∼10 ppb). In addition, flexible fluorescent p-RPT gloves were developed for visible and wearable Hg2+ detection and applied to detect mercury (II) in river prawn samples. In summary, the p-RPT probe not only shows great potential in mercury (II) detection for food and water, but also provides a new perspective for wearable sensing apparatus.


Assuntos
Mercúrio , Dispositivos Eletrônicos Vestíveis , Corantes Fluorescentes , Rodaminas , Água
14.
Chem Commun (Camb) ; (22): 3199-201, 2009 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-19587912

RESUMO

A series of aminobenzoic acid crystals with stacking-induced emission properties has been achieved and the packing structures of the hydrogen-bonded acid dimers provided an explanation for the emission characteristics of the crystals.

15.
Dalton Trans ; 48(48): 17840-17851, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31777884

RESUMO

A new ortho-dimethylaminomethylphenyl-tetramethylcyclopentadienyl ligand C5Me4H-C6H4-o-CH2NMe2 (HL) and a series of rare-earth metal complexes bearing this ligand were synthesized. Of these complexes, two binuclear alkyl complexes [(C5Me4-C6H4-o-CH2N(Me)CH2-µ)Ln(CH2SiMe3)]2 (Ln = Sc (1a) and Y (1b)) were obtained from the alkane elimination reaction of the free ligand with Ln(CH2SiMe3)3(THF)2, followed by an intramolecular C-H activation process of a NMe group in the ligand with a CH2SiMe3 group, two binuclear dichloro complexes (C5Me4-C6H4-o-CH2NMe2)2Y2Cl4[LiCl(THF)2] (2a) and [(C5Me4-C6H4-o-CH2NMe2)LuCl(µ-Cl)]2 (2b) were synthesized by the reaction of anhydrous yttrium or lutetium trichloride with the lithium salt of the ligand LiL, and the binuclear bis(borohydrido) complexes [(C5Me4-C6H4-o-CH2NMe2)Ln(µ-BH4)BH4]2 (Ln = Sm (3a) and Nd (3b)) were synthesized by the reaction of Ln(BH4)3(THF)3 (Ln = Sm and Nd) with the lithium salt of the ligand. The molecular structures of all complexes 1a, 1b, 2a, 2b, 3a and 3b were determined by single-crystal X-ray crystallography. Upon activation with AlR3/Ph3CB(C6F5)4, MAO or MMAO, the binuclear alkyl complexes 1a and 1b show good catalytic activity for isoprene cis-1,4 enriched regioselective polymerization and moderate catalytic activity for 1-hexene polymerization. Complexes 3a and 3b were studied as catalysts for methyl methacrylate polymerization reaction under different conditions and were found to show moderate to high catalytic activity.

16.
Dalton Trans ; 48(15): 4912-4920, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30912553

RESUMO

A series of new half-sandwich secondary amine-coordinated dichlorochromium complexes chelated by 2-(tetramethylcyclopentadienyl)benzylamine ligands, 2-Me4CpC6H4CH2(R)NHCrCl2 [R = iPr (1), Cy (2), Ph (3), 4-MePh (4), 2,6-Me2Ph (5), 2,6-Et2Ph (6)], have been synthesized from the reactions of CrCl3(THF)3 with the dilithium salts of the corresponding ligands in THF, followed by the addition of 1/2 eq. of H2O to the reaction mixtures. The isolated yields of the chromium complexes were found to increase with the increase in the amount of H2O introduced and reach the highest values (66-76%) when 1/2 eq. of H2O is added. Attempts to isolate the 2-(tetramethylcyclopentadienyl)benzylamidochromium complexes, 2-Me4CpC6H4CH2(R)NCrCl, were not successful. The new dichlorochromium complexes were characterized by IR, 1H NMR, EPR, and UV/Vis spectroscopy and elemental analyses, and the molecular structures of complexes 1, 5 and 6 were determined by X-ray crystallography. The X-ray crystallographic analysis reveals that these chromium complexes possess a three-legged piano-stool geometry with the amine N atom in a mitered six-membered chelating ring and the two chloride atoms as the legs. Upon activation with AlR3 and Ph3CB(C6F5)4, complexes 1-6 exhibit reasonable catalytic activity for ethylene polymerization and copolymerization with 1-hexene, producing polyethylenes with moderate to high molecular weights and poly(ethylene-co-1-hexene)s with moderate comonomer incorporation which are typical linear low-density polyethylenes (LLDPE). Complex 4 was found to show higher catalytic activity for ethylene homo- and co-polymerization than other complexes under similar conditions, while complex 3 produced poly(ethylene-co-1-hexene)s with the highest comonomer incorporation.

17.
J Phys Chem Lett ; 10(19): 5983-5988, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31537062

RESUMO

A pure organic molecule 2,6-di(phenothiazinyl)naphthalene (DPTZN) with room-temperature phosphorescence (RTP) features was developed. Remarkably, a triazine-benzimidazole-based molecule TRZ-BIM can significantly improve the RTP efficiency of DPTZN in DPTZN:TRZ-BIM blend films. The photoluminescence quantum yield (PLQY) of 10 wt % DPTZN:TRZ-BIM blend film is 38%. The RTP property of DPTZN:TRZ-BIM blend films was characterized by steady, time-resolved, and temperature-dependent emission spectra. An organic light-emitting diode (OLED) with 10 wt % DPTZN:TRZ-BIM blend film as the emitting layer showed a high maximum external quantum efficiency of 11.5%, current efficiency of 33.8 cd A-1, and power efficiency of 32.6 lm W-1. Herein, we have developed an efficient approach to achieve precious-metal-free organic films that can be employed to fabricate high-performance phosphorescence OLEDs.

18.
Dalton Trans ; 48(36): 13719-13731, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31469372

RESUMO

A number of new sulfur-bridged tridentate [OSO] bisphenolato-based ligand precursors S(2-CH2-4-tBu-6-R-C6H2OH)2 [R = CMe3 (H2L1), CMe2Ph (H2L2), CMePh2 (H2L3), CPh3 (H2L4), and C(p-Tol)3 (H2L5)] were synthesized by reactions of Na2S·9H2O with 2 eq. of the corresponding 2-(bromomethyl)-4-(tert-butyl)-6-R-phenol. Their neutral titanium complexes [S(2-CH2-4-tBu-6-R-C6H2O)2]TiCl2 [R = CMe3 (1), CMe2Ph (2), CMePh2 (3), CPh3 (4), and C(p-Tol)3 (5)] were synthesized in high yields by direct HCl-elimination reactions of TiCl4 with the corresponding ligand precursors in toluene. Ionic titanium complexes [NHEt3][S(2-CH2-4-tBu-6-R-C6H2O)2TiCl3] [R = CMe3 (6), CMePh2 (7)] and [NH2Et2][S(2-CH2-4-tBu-6-R-C6H2O)2TiCl3] [R = CMe3 (8) and CMePh2 (9)] were obtained in high yields from the reactions of TiCl4 with the corresponding ligand precursors in the presence of 2 eq. of triethylamine or diethylamine. Neutral zirconium complexes [S(2-CH2-4-tBu-6-R-C6H2O)2]ZrCl2(THF) [R = CMe2Ph (10·THF), and CMePh2 (11·THF)] were synthesized by reactions of ZrCl4 with 1 eq. of the dilithium salt of the corresponding ligand precursors Li2L in THF. The new titanium and zirconium complexes were characterized by 1H and 13C NMR, IR and elemental analyses. The molecular structures of complexes 4, 6 and 10·THF were determined by single-crystal X-ray diffraction analysis. The X-ray crystallography analysis reveals that titanium complex 4 has a five-coordinating environment surrounding the central metal atom, while the titanium complex 6 and the THF-solvated zirconium complex 10·THF possess a six-coordinating pseudo-octahedral environment around the central metal atom. Upon activation with MAO or AliBu3/Ph3CB(C6F5)4, all these titanium and zirconium complexes exhibit moderate to high catalytic activities for ethylene polymerization and ethylene/1-hexene copolymerization with moderate to high comonomer incorporation, and the ionic titanium complexes 6, 7, 8 and 9 show lower catalytic activity than their corresponding neutral complexes under similar conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA