Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 273: 116100, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367607

RESUMO

Chlorothalonil (CTL) is widely used in agricultural production and antifoulant additive globally due to its broad spectrum and non-systemic properties, resulting in its widespread existence in foods, soil and water. Extensive evidence demonstrated that exposure to CTL induced adverse effects on organisms and in particular its reproductive toxicity has been attracted public concern. However, the influences of CTL on oocyte maturation is mysterious so far. In this study, we documented the toxic effects of CTL on oocyte in vitro maturation and the related underlying mechanisms. Exposure to CTL caused continuous activation of spindle assembly checkpoints (SAC) which in turn compromised meiotic maturation in mouse oocyte, featured by the attenuation of polar body extrusion (PBE). Detection of cytoskeletal dynamics demonstrated that CTL exposure weakened the acetylation level of α-tubulin and impaired meiotic spindle apparatus, which was responsible for the aberrant state of SAC. Meanwhile, exposure to CTL damaged the function of mitochondria, inducing the decline of ATP content and the elevation of reactive oxygen species (ROS), which thereby induced early apoptosis and DNA damage in mouse oocytes. In addition, exposure to CTL caused the alteration of the level of histone H3 methylation, indicative of the harmful effects of CTL on epigenetic modifications in oocytes. Further, the CTL-induced oxidative stress activated mitogen-activated protein kinase (MAPK) pathway and injured the maturation of oocytes. In summary, exposure to CTL damaged mouse oocyte in vitro maturation via destroying spindle assembly, inducing oxidative stress and triggering MAPK pathway activation.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Proteínas Quinases Ativadas por Mitógeno , Nitrilas , Animais , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo , Oócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose
2.
Trop Med Int Health ; 28(10): 817-829, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37705047

RESUMO

INTRODUCTION: The World Health Organization recommends regular monitoring of the efficacy of nationally recommended antimalarial drugs. We present the results of studies on the efficacy of recommended antimalarials and molecular markers of artemisinin and partner resistance in Afghanistan, Pakistan, Somalia, Sudan and Yemen. METHODS: Single-arm prospective studies were conducted to evaluate the efficacy of artesunate-sulfadoxine-pyrimethamine (ASSP) in Afghanistan and Pakistan, artemether-lumefantrine (AL) in all countries, or dihydroartemisinin-piperaquine (DP) in Sudan for the treatment of Plasmodium falciparum. The efficacy of chloroquine (CQ) and AL for the treatment of Plasmodium vivax was evaluated in Afghanistan and Somalia, respectively. Patients were treated and monitored for 28 (CQ, ASSP and AL) or 42 (DP) days. Polymerase chain reaction (PCR)-corrected cure rate and parasite positivity rate at Day 3 were estimated. Mutations in the P. falciparum kelch 13 (Pfk13) gene and amplifications of plasmepsin (Pfpm2) and multidrug resistance-1 (Pfmdr-1) genes were also studied. RESULTS: A total of 1680 (249 for ASSP, 1079 for AL and 352 for DP) falciparum cases were successfully assessed. A PCR-adjusted ASSP cure rate of 100% was observed in Afghanistan and Pakistan. For AL, the cure rate was 100% in all but four sites in Sudan, where cure rates ranged from 92.1% to 98.8%. All but one patient were parasite-free at Day 3. For P. vivax, cure rates were 98.2% for CQ and 100% for AL. None of the samples from Afghanistan, Pakistan and Yemen had a Pfk13 mutation known to be associated with artemisinin resistance. In Sudan, the validated Pfk13 R622I mutation accounted for 53.8% (14/26) of the detected non-synonymous Pfk13 mutations, most of which were repeatedly detected in Gadaref. A prevalence of 2.7% and 9.3% of Pfmdr1 amplification was observed in Pakistan and Yemen, respectively. CONCLUSION: High efficacy of ASSP, AL and DP in the treatment of uncomplicated falciparum infection and of CQ and AL in the treatment of P. vivax was observed in the respective countries. The repeated detection of a relatively high rate of Pfk13 R622I mutation in Sudan underscores the need for close monitoring of the efficacy of recommended ACTs, parasite clearance rates and Pfk13 mutations in Sudan and beyond. Registration numbers of the trials: ACTRN12622000944730 and ACTRN12622000873729 for Afghanistan, ACTRN12620000426987 and ACTRN12617001025325 for Pakistan, ACTRN12618001224213 for Somalia, ACTRN12617000276358, ACTRN12622000930785 and ACTRN12618001800213 for Sudan and ACTRN12617000283370 for Yemen.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária Vivax , Malária , Humanos , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Estudos Prospectivos , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemeter/uso terapêutico , Artemisininas/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Cloroquina/uso terapêutico , Artesunato/uso terapêutico , Plasmodium falciparum/genética , Combinação de Medicamentos , Malária Vivax/tratamento farmacológico , Malária Vivax/epidemiologia , Resistência a Medicamentos/genética
3.
Anim Biotechnol ; 34(7): 2082-2093, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35533681

RESUMO

The sterol regulatory element-binding factor (SREBF) genes are a vital group of proteins binding to the sterol regulatory element 1 (SRE-1) regulating the synthesis of fatty acid. Two potential candidate genes (SREBF1 and SREBF2) have been identified as affecting milk traits. This study aims to identify the SREBF family of genes and find candidate markers or SREBF genes influencing lactation production in buffalo. A genome-wide study was performed and identified seven SREBF genes randomly distributed on 7 chromosomes and 24 protein isoforms in buffalos. The SREBF family of genes were also characterized in cattle, goat, sheep and horse, and using these all-protein sequences, a phylogenetic tree was built. The SREBF family genes were homologous between each other in the five livestock. Eight single nucleotide polymorphisms (SNPs) within or near the SREBF genes in the buffalo genome were identified and at least one milk production trait was associated with three of the SNP. The expression of SREBF genes at different lactation stages in buffalo and cattle from published data were compared and the SREBF genes retained a high expression throughout lactation with the trend being the same for buffalo and cattle. These results provide valuable information for clarifying the evolutionary relationship of the SREBF family genes and determining the role of SREBF genes in the regulation of milk production in buffalo.


Assuntos
Estudo de Associação Genômica Ampla , Leite , Feminino , Bovinos/genética , Animais , Cavalos/genética , Ovinos/genética , Leite/química , Estudo de Associação Genômica Ampla/veterinária , Filogenia , Lactação/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Búfalos/genética
4.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768756

RESUMO

Understanding the genetic mechanisms underlying milk production traits contribute to improving the production potential of dairy animals. Squalene epoxidase (SQLE) is one of the rate-limiting enzymes for cholesterol biosynthesis and was highly expressed in the buffalo mammary. The objectives of the present study were to detect the polymorphisms within SQLE in buffalo, the genetic effects of these mutations on milk production traits, and to understand the gene regulatory effects on buffalo mammary epithelial cells (BuMECs). A total of five SNPs were identified by sequencing, g.18858G > A loci were significantly associated with fat yield, and g.22834C > T loci were significantly associated with peak milk yield, milk yield, fat yield, and protein yield. Notably, linkage disequilibrium analysis indicated that 2 SNPs (g.18858G > A and g.22834C > T) formed one haplotype block, which was found to be significantly associated with milk fat yield, fat percentage, and protein yield. Furthermore, expression of SQLE was measured in different tissues of buffalo and was found to be higher in the mammary. Knockdown of SQLE gene expression significantly affected the growth of BuMECs, including proliferation, cell cycle, and apoptosis, and significantly downregulated the expression of related genes MYC, PCNA, and P21. In addition, knockdown of the SQLE gene significantly reduces triglyceride concentrations and the signal intensity of oil red O staining. In addition, silencing of SQLE was also found to regulate the synthesis and secretion of ß-casein and κ-casein negatively. Furthermore, SQLE knockdown is accompanied by the downregulation of critical genes (RPS6KB1, JAK2, eIF4E, and SREBP1) related to milk fat and protein synthesis. The current study showed the potential of the SQLE gene as a candidate for buffalo milk production traits. It provides a new understanding of the physiological mechanisms underlying buffalo milk production regulation.


Assuntos
Leite , Esqualeno Mono-Oxigenase , Animais , Leite/metabolismo , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Fenótipo , Haplótipos , Polimorfismo de Nucleotídeo Único , Búfalos/genética
5.
Ecotoxicol Environ Saf ; 234: 113393, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35278989

RESUMO

Zinc Pyrithione (ZPT), a Food and Drug Administration (FDA) approved chemical, is widely used for topical antimicrobials and cosmetic consumer products, including anti-dandruff shampoos. ZPT and its degraded byproducts have detected in large quantities in the environment, and identified to pose healthy risks on aquatic organisms and human. However, so far, knowledge about ZPT effects on female reproduction, particularly oocyte maturation and quality, is limited. Herein, we investigated the adverse impact of ZPT on mouse oocyte maturation and quality in vitro and found exposure to ZPT significantly compromises oocyte maturation. The results revealed that ZPT disturbed the meiotic cell cycle by impairing cytoskeletal dynamics, kinetochore-microtubule attachment (K-MT), and causing spindle assembly checkpoints (SAC) continuous activation. Further, we observed the microtubule-organizing centers (MTOCs) associated proteins p-MAPK and Aurora-A were disrupted in ZPT-treated oocytes, signified by decreased expression and abnormal localization, responsible for the severe cytoskeletal defects. In addition, ZPT exposure induced a significant increase in the levels of H3K9me2, H3K9me3, H3K27me1, and H3K27me3, suggesting the alterations of epigenetic modifications. Moreover, the accumulation of zinc ions (Zn2+) was observed in ZPT-treated oocytes, which was detrimental because overmuch intracellular Zn2+ disrupted oocyte meiosis. Finally, these above alterations impaired spindle organization and chromosome alignment in metaphase-II (MII) oocytes, indicative of damaged oocytes quality. In conclusion, ZPT exposure influenced oocyte maturation and quality via involvement in MTOCs-associated proteins mediated spindle defects, altered epigenetic modifications and zinc accumulation.

6.
Environ Toxicol ; 37(6): 1413-1422, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35218298

RESUMO

Bisphenol F (BPF), a substitute for bisphenol A (BPA), is progressively used to manufacture various consumer products. Despite the established reproductive toxicity of BPF, the underlying mechanisms remain to elucidate. This in-vitro study deep in sighted the BPF toxicity on mouse oocyte meiotic maturation and quality. After treating oocytes with BPF (300 µM), the oocyte meiotic progression was blocked, accentuated by a reduced rate in the first polar body extrusion (PBE). Next, we illustrated that BPF induced α-tubulin hyper-acetylation disrupted the spindle assembly and chromosome alignment. Concurrently, BPF resulted in severe oxidative stress and DNA damage, which triggered the early apoptosis in mouse oocytes. Further, altered epigenetic modifications following BPF exposure were proved by increased H3K27me3 levels. Concerning the toxic effects on spindle structure, oxidative stress, and DNA damage in mouse oocytes, BPF toxicity was less severe to oocyte maturation and spindle structure than BPA and induced low oxidative stress. However, compared with BPA, oocytes treated with BPF were more prone to DNA damage, indicating not less intense or even more severe toxic effects of BPF than BPA on some aspects of oocytes maturation. In brief, the present study established that like wise to BPA, BPF could inhibit meiotic maturation and reduce oocyte quality, suggesting it is not a safe substitute for BPA.


Assuntos
Compostos Benzidrílicos , Técnicas de Maturação in Vitro de Oócitos , Animais , Compostos Benzidrílicos/metabolismo , Dano ao DNA , Camundongos , Oócitos , Estresse Oxidativo , Fenóis
7.
Multimed Syst ; 28(4): 1275-1288, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33897112

RESUMO

Classification of human emotions based on electroencephalography (EEG) is a very popular topic nowadays in the provision of human health care and well-being. Fast and effective emotion recognition can play an important role in understanding a patient's emotions and in monitoring stress levels in real-time. Due to the noisy and non-linear nature of the EEG signal, it is still difficult to understand emotions and can generate large feature vectors. In this article, we have proposed an efficient spatial feature extraction and feature selection method with a short processing time. The raw EEG signal is first divided into a smaller set of eigenmode functions called (IMF) using the empirical model-based decomposition proposed in our work, known as intensive multivariate empirical mode decomposition (iMEMD). The Spatio-temporal analysis is performed with Complex Continuous Wavelet Transform (CCWT) to collect all the information in the time and frequency domains. The multiple model extraction method uses three deep neural networks (DNNs) to extract features and dissect them together to have a combined feature vector. To overcome the computational curse, we propose a method of differential entropy and mutual information, which further reduces feature size by selecting high-quality features and pooling the k-means results to produce less dimensional qualitative feature vectors. The system seems complex, but once the network is trained with this model, real-time application testing and validation with good classification performance is fast. The proposed method for selecting attributes for benchmarking is validated with two publicly available data sets, SEED, and DEAP. This method is less expensive to calculate than more modern sentiment recognition methods, provides real-time sentiment analysis, and offers good classification accuracy.

8.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34769258

RESUMO

Cathepsin B (CTSB), a lysosomal cysteine protease's high expression and activity, has been reported to cause poor-quality embryos in porcine and bovine. Nevertheless, CTSB functions in mice granulosa cells remain to explore. To discuss the CTSB functional role in follicular dynamics, we studied apoptosis, proliferation, cell cycle progression, and related signaling pathways in primary mouse granulosa cells transfected with small interference RNA specific to CTSB (siCTSB) for 48 h. Further, mRNA and protein expression of cell proliferation regulators (Myc and cyclin D2), apoptosis regulators (caspase 3, caspase 8, TNF-α, and Bcl2), steroidogenesis-related genes (FSHR and CYP11A1), and autophagy markers (LC3-I and ATG5) were investigated. In addition, the effect of CTSB on steroidogenesis and autophagy was also examined. Flow cytometry analysis assay displayed that silencing of CTSB decreased the early and total apoptosis rate by downregulating TNF-α, caspase 8, and caspase 3, and upregulating Bcl2. By regulating Myc and cyclin D2 expression and activating the p-Akt and p-ERK pathways, CTSB knockdown increased GC proliferation and number. A significant decline in estradiol and progesterone concentrations was observed parallel to a significant decrease in autophagy-related markers LC3-I and ATG5 compared to the control group. Herein, we demonstrated that CTSB serves as a proapoptotic agent and plays a critical role in folliculogenesis in female mice by mediating apoptosis, autophagy, proliferation, and steroidogenesis. Hence, CTSB could be a potential prognostic agent for female infertility.


Assuntos
Apoptose , Catepsina B/metabolismo , Ciclo Celular , Regulação da Expressão Gênica , Células da Granulosa/metabolismo , Animais , Catepsina B/genética , Feminino , Técnicas de Inativação de Genes , Camundongos
9.
Microb Pathog ; 147: 104361, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32622926

RESUMO

The innate immune system is the first line of defense in vertebrates against microbial pathogens. This defense system depends on the peptidoglycan pathogen recognition of receptors (PGRPs) existing in both invertebrates and vertebrates. Although some studies revealed the structural and functional differences between them, however, the evolutionary history and the selection pressures on these genes during adaptive evolution are poorly understood. In this study, we examined four (PGLYRP1, PGLYRP2, PGLYRP3, and PGLYRP4) genes of 127 vertebrates' species, conserved across vertebrates to evaluate positive selection pressure drives by adaptive evolution. The codons under positive selection were recognized through likelihood tests by comparing different models based on ω ratios in these genes across the vertebrate species. The positive selection test used two sets of models M1a vs. M2a and M7 vs. M8. The results showed that the test of these genes in M1a vs. M2a was not significant with the likelihood value 2ΔlnL = 0, while the likelihood ratios (2ΔlnL) were 2ΔlnL = 12.386, 2ΔlnL = 4.9283, 2ΔlnL = 24.031, and 2ΔlnL = 103.39 for PGLYRP1, PGLYRP2, PGLYRP3, and PGLYRP4 in M7 vs. M8, respectively. Our study identified the evidence of robust positive selection for these four genes across the vertebrates. These protuberant changes in PGRPs evolution of vertebrates reveal their role in innate immunity. Our study provides an insight based on PGRP genes to understand the evolution of host and pathogens interaction that leads to the progress of the novel conducts for immune diseases that include proteins linked to the recognition of pathogens.


Assuntos
Proteínas de Transporte , Vertebrados , Animais , Proteínas de Transporte/genética , Evolução Molecular , Imunidade Inata , Filogenia , Proteínas
10.
Sensors (Basel) ; 20(13)2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32635609

RESUMO

Emotional awareness perception is a largely growing field that allows for more natural interactions between people and machines. Electroencephalography (EEG) has emerged as a convenient way to measure and track a user's emotional state. The non-linear characteristic of the EEG signal produces a high-dimensional feature vector resulting in high computational cost. In this paper, characteristics of multiple neural networks are combined using Deep Feature Clustering (DFC) to select high-quality attributes as opposed to traditional feature selection methods. The DFC method shortens the training time on the network by omitting unusable attributes. First, Empirical Mode Decomposition (EMD) is applied as a series of frequencies to decompose the raw EEG signal. The spatiotemporal component of the decomposed EEG signal is expressed as a two-dimensional spectrogram before the feature extraction process using Analytic Wavelet Transform (AWT). Four pre-trained Deep Neural Networks (DNN) are used to extract deep features. Dimensional reduction and feature selection are achieved utilising the differential entropy-based EEG channel selection and the DFC technique, which calculates a range of vocabularies using k-means clustering. The histogram characteristic is then determined from a series of visual vocabulary items. The classification performance of the SEED, DEAP and MAHNOB datasets combined with the capabilities of DFC show that the proposed method improves the performance of emotion recognition in short processing time and is more competitive than the latest emotion recognition methods.

11.
Toxicol Ind Health ; 35(4): 294-303, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30871434

RESUMO

Bisphenol A (BPA) is a well-known endocrine-disrupting chemical with estrogenic activity. The widespread exposure of individuals to BPA is suspected to affect a variety of physiological functions, including reproduction, development, and metabolism. Here we report the mechanisms by which BPA and three of its analogues bisphenol B (BPB), bisphenol F (BPF), and bisphenol S (BPS) cause generation of reactive oxygen species (ROS), sperm DNA damage, and oxidative stress in both in vivo and in vitro rat models. Sperm were incubated with different concentrations (1, 10, and 100 µg/L) of BPA and its analogues BPB, BPF, and BPS for 2 h. BPA and its analogues were observed to increase DNA fragmentation, formation of ROS, and affected levels of superoxide dismutase at higher concentration groups. In an in vivo experiment, rats were exposed to different concentrations (5, 25, and 50 mg/kg/day) of BPA, BPB, BPF, and BPS for 28 days. In the higher dose (50 mg/kg/day) treated groups of BPA and its analogues BPB, BPF, and BPS, DNA damage was observed while the motility of sperm was not affected.


Assuntos
Compostos Benzidrílicos/toxicidade , Dano ao DNA/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenóis/toxicidade , Sulfonas/toxicidade , Animais , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Superóxido Dismutase/metabolismo
12.
Sensors (Basel) ; 19(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795095

RESUMO

Much attention has been paid to the recognition of human emotions with the help of electroencephalogram (EEG) signals based on machine learning technology. Recognizing emotions is a challenging task due to the non-linear property of the EEG signal. This paper presents an advanced signal processing method using the deep neural network (DNN) for emotion recognition based on EEG signals. The spectral and temporal components of the raw EEG signal are first retained in the 2D Spectrogram before the extraction of features. The pre-trained AlexNet model is used to extract the raw features from the 2D Spectrogram for each channel. To reduce the feature dimensionality, spatial, and temporal based, bag of deep features (BoDF) model is proposed. A series of vocabularies consisting of 10 cluster centers of each class is calculated using the k-means cluster algorithm. Lastly, the emotion of each subject is represented using the histogram of the vocabulary set collected from the raw-feature of a single channel. Features extracted from the proposed BoDF model have considerably smaller dimensions. The proposed model achieves better classification accuracy compared to the recently reported work when validated on SJTU SEED and DEAP data sets. For optimal classification performance, we use a support vector machine (SVM) and k-nearest neighbor (k-NN) to classify the extracted features for the different emotional states of the two data sets. The BoDF model achieves 93.8% accuracy in the SEED data set and 77.4% accuracy in the DEAP data set, which is more accurate compared to other state-of-the-art methods of human emotion recognition.


Assuntos
Eletroencefalografia/métodos , Emoções/fisiologia , Adulto , Algoritmos , Interfaces Cérebro-Computador , Feminino , Humanos , Masculino , Modelos Teóricos , Adulto Jovem
13.
Drug Dev Ind Pharm ; 45(10): 1682-1694, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31407925

RESUMO

Eco-friendly green synthesis of nanoparticles using medicinal plants gained immense importance due to its potential therapeutic uses. In the current study, silver nanoparticles (AgNPs) were synthesized using water extract of Jurinea dolomiaea leaf and root at room temperature. MTT assay was used to study anticancer potential of AgNPs against cervical cancer cell line (HeLa), breast cancer cell lines (MCF-7), and mouse embryonic fibroblast (NIH-3 T3) cell line for toxicity evaluation. The antioxidant potential was evaluated using stable DPPH radicals. In addition, the apoptotic nuclear changes prompted by AgNPs in more susceptible HeLa cells were observed using fluorescence microscope through DAPI and PI staining. Physiochemical properties of biosynthesized AgNPs were characterized using various techniques. AgNPs were formed in very short time and UV-vis spectra showed characteristic absorption peak of AgNPs. SEM and TEM showed spherical shape of AgNPs and XRD revealed their crystalline nature. EDX analysis revealed high percentage of silver in green synthesized AgNPs. FTIR analysis indicated involvement of secondary metabolites in fabrication of AgNPs. In vitro cytotoxic and antioxidant study revealed that herb and biosynthesized AgNPs exhibited significant dose-dependent and time-dependent anticancer and antioxidant potential. Furthermore, study on normal cell line and microscopic analysis of apoptosis revealed that AgNPs exhibited good safety profile as compared to cisplatin and induces significant apoptosis effect. Based on the current findings, it is strongly believe that use of J. dolomiaea offers large scale production of biocompatible AgNPs that can be used as alternative anticancer agents against cancer cell lines tested.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Nanopartículas Metálicas/química , Prata/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Química Verde/métodos , Células HeLa , Humanos , Células MCF-7 , Camundongos , Células NIH 3T3 , Extratos Vegetais/química , Folhas de Planta/química
14.
J Pak Med Assoc ; 69(5): 632-639, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31105281

RESUMO

OBJECTIVE: To compare the occurrence, distribution and management of clefts of lip and palate in local patients with the available data from India and China. METHODS: The retrospective study was conducted at the Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan, and comprised data related to a three-month period from January to March 2015 at two medical centres in Lahore. Data from Pakistani centres was analysed based on province, gender, age and clefts of lip and palate conditions and Spearman's correlation matrix. RESULTS: Of the 1574 cases, 1061(67.4%) were from Punjab, 361(23%) Khyber Pakhtunkhwa, 85(5%) Sindh and 67(4.2%) were from Azad Jammu and Kashmir. The incidence of clefts of lip and palate was higher in males than females. There was higher awareness of the need for timely management in new borns with clefts of lip and palate. Some patients seeking secondary treatment were also being surgically corrected. There is no national registry of children born with cleft defect, making it difficult to assess the full scale of the problem.. CONCLUSIONS: Based on available data, it is likely that there are many adults who have not been treated when younger..


Assuntos
Fenda Labial/epidemiologia , Fissura Palatina/epidemiologia , Adolescente , Adulto , Enxerto de Osso Alveolar , Criança , Pré-Escolar , China/epidemiologia , Fenda Labial/cirurgia , Fissura Palatina/cirurgia , Intervenção Médica Precoce , Feminino , Humanos , Incidência , Índia/epidemiologia , Lactente , Masculino , Paquistão/epidemiologia , Aceitação pelo Paciente de Cuidados de Saúde , Reoperação , Estudos Retrospectivos , Distribuição por Sexo , Adulto Jovem
15.
Curr Issues Mol Biol ; 26: 93-102, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28879859

RESUMO

Genome editing is unraveling its benefits in wide areas of scientific development and understanding. The advances of genome editing from ZFNs and TALLENs to CRISPRs defines it wide applicability. Reproduction is the fundamental process by which all organisms maintain their generations. CRISPR/Cas9, a new versatile genome editing tool is recently tamed to correct several disease causing genetic mutations spreading its arms to improve reproductive health. It not only edit harmful genetic mutations but is also applied to control the spread of parasitic diseases like malaria by introducing selfish genetic elements, propagated through generations and population via reproduction. These applications made us to review the recent developments of CRISPRs use in reproductive biology.


Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/genética , Genoma , Controle Biológico de Vetores/métodos , RNA Guia de Cinetoplastídeos/genética , Medicina Reprodutiva/métodos , Animais , Anopheles/genética , Anopheles/parasitologia , Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR , Embrião de Mamíferos , Endonucleases/metabolismo , Feminino , Edição de Genes , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Plasmodium falciparum/genética , RNA Guia de Cinetoplastídeos/metabolismo
16.
Curr Issues Mol Biol ; 28: 47-68, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29428910

RESUMO

Precise nucleic acid editing technologies have facilitated the research of cellular function and the development of novel therapeutics, especially the current programmable nucleases-based editing tools, such as the prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)-associated nucleases (Cas). As CRISPR-based therapies are advancing toward human clinical trials, it is important to understand how natural genetic variation in the human population may affect the results of these trials and even patient safety. The development of "base-editing" technique allows the direct, stable transformation of target DNA base into an alternative in a programmable way, without DNA double strand cleavage or a donor template. Genome-editing techniques hold promises for the treatment of genetic disease at the DNA level by blocking the sequences associated with disease from producing disease-causing proteins. Currently, scientists can select the gene they want to modify, use the Cas9 as a "molecular cutter" to cut it out, and transform it into a more desirable version. In this review, we focus on the recent advances of CRISPR/Cas system by outlining the evolutionary and biotechnological implications of current strategies for improving the specificity and accuracy of these genome-editing technologies.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Doenças Genéticas Inatas/terapia , Biotecnologia/tendências , Edição de Genes/tendências , Doenças Genéticas Inatas/genética , Humanos
17.
Artif Organs ; 42(4): 401-409, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29572879

RESUMO

Clinical success of pediatric veno-venous (VV) extracorporeal membrane oxygenation (ECMO) is associated with the double lumen cannula cardiovascular device design as well as its anatomic orientation in the atrium. The positions of cannula ports with respect to the vena cavae and the tricuspid valve are believed to play a significant role on device hemodynamics. Despite various improvements in ECMO catheters, especially for the neonatal and congenital heart patients, it is still challenging to select a catalogue size that would fit to most patients optimally. In effect, the local unfavorable blood flow characteristics of the cannula would translate to an overall loss of efficiency of the ECMO circuit. In this study, the complex flow regime of a neonatal double lumen cannula, positioned in a patient-specific right atrium, is presented for the first time in literature. A pulsatile computational fluid dynamics (CFD) solver that is validated for cardiovascular device flow regimes was used to perform the detailed flow, oxygenated blood transport, and site-specific blood damage analysis using an integrated cannula and right atrium model. A standard 13Fr double lumen cannula was scanned using micro-CT, reconstructed and simulated under physiologic flow conditions. User defined scalar transport equations allowed the quantification of the mixing and convection of oxygenated and deoxygenated blood as well as blood residence times and hemolysis build-up. Site-specific CFD analysis provided key insight into the hemodynamic challenges encountered in cannula design and the associated intra-atrial flow patterns. Due to neonatal flow conditions, an ultra high velocity infusion jet emanated from the infusion port and created a zone of major recirculation in the atrium. This flow regime influenced the delivery of the oxygenated blood to the tricuspid valve. Elevated velocities and complex gradients resulted in higher wall shear stresses (WSS) particularly at the infusion port having the highest value followed by the aspiration hole closest to the drainage port. Our results show that, in a cannula that is perfectly oriented in the atrium, almost 38% of the oxygenated blood is lost to the atrial circulation while only half of the blood from inferior vena cava (IVC) can reach to the tricuspid valve. As such, approximately 6% of venous blood from superior vena cava (SVC) can be delivered to tricuspid. High values of hemolysis index were observed with blood damage encountered around infusion hole (0.025%). These results warrant further improvements in the cannula design to achieve optimal performance of ECMO and better patient outcomes.


Assuntos
Cânula/efeitos adversos , Oxigenação por Membrana Extracorpórea/instrumentação , Átrios do Coração/fisiopatologia , Hemodinâmica/fisiologia , Modelos Cardiovasculares , Desenho de Equipamento , Oxigenação por Membrana Extracorpórea/efeitos adversos , Oxigenação por Membrana Extracorpórea/métodos , Humanos , Lactente , Fluxo Sanguíneo Regional , Insuficiência Respiratória/terapia , Valva Tricúspide/fisiopatologia , Veias Cavas
18.
Ecotoxicol Environ Saf ; 164: 648-658, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30170313

RESUMO

Chromium Cr(VI) is highly toxic and leads to impaired phenotypic plasticity of economically important crops. The current study assessed an endophytic-bacteria assisted metal bio-remediation strategy to understand stress-alleviating mechanisms in Glycine max L (soybean) plants inoculated with Sphingomonas sp. LK11 under severe Cr(VI) toxicity. The screening analysis showed that high Cr concentrations (5.0 mM) slightly suppressed LK11 growth and metal uptake by LK11 cells, while significantly enhancing indole-3-acetic acid (IAA) production. Endophytic LK11 significantly upregulated its antioxidant system compared to control by enhancing reduced glutathione (GSH), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activities to counteract Cr-induced oxidative stress. Cr toxicity induced cell morphological alteration, as shown by SEM-EDX analysis and triggered significant lipid peroxidation. The interaction between LK11 and soybean in Cr-contaminated soil significantly increased plant growth attributes and down-regulated the synthesis of endogenous defense-related phytohormones, salicylic acid and abscisic acid, by 20% and 37%, respectively, and reduced Cr translocation to the roots, shoot, and leaves. Additionally, Cr-induced oxidative stress was significantly reduced in LK11-inoculated soybean, regulating metal responsive reduced GSH and enzymatic antioxidant CAT. Current findings indicate that LK11 may be a suitable candidate for the bioremediation of Cr-contaminated soil and stimulation of host physiological homeostasis.


Assuntos
Cromo/toxicidade , Glycine max/efeitos dos fármacos , Sphingomonas/metabolismo , Ácido Abscísico/metabolismo , Catalase/metabolismo , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Glutationa/metabolismo , Ácidos Indolacéticos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , Ácido Salicílico/metabolismo , Poluentes do Solo/toxicidade , Glycine max/metabolismo , Glycine max/microbiologia , Superóxido Dismutase/metabolismo , Regulação para Cima
19.
Bull Environ Contam Toxicol ; 99(4): 511-517, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28785982

RESUMO

Antimony (Sb) and arsenic (As) contaminations are the well reported and alarming issues of various contaminated smelting and mining sites all over the world, especially in China. The present hydroponic study was to assess the capacity of Vetiveria zizanioides for Sb, As and their interactive accumulations. The novelty of the present research is this that the potential of V. zizanioides for Sb and As alone and their interactive accumulation are unaddressed. This is the first report about the interactive co-accumulation of Sb and As in V. zizanioides. Highest applied Sb and As contaminations significantly inhibited the plant growth. Applied Sb and As alone significantly increased their concentrations in the roots/shoot of V. zizanioides. While co-contamination of Sb and As steadily increased their concentrations, in the plant. The co-contamination of Sb and As revealed a positive correlation between the two, as they supplemented the uptake and accumulation of each other. The overall translocation (TF) and bioaccumulation factors (BF) of Sb in V. zizanioides, were 0.75 and 4. While the TF and BF of As in V. zizanioides, were 0.86 and 10. V. zizanioides proved as an effective choice for the phytoremediation and ecosystem restoration of Sb and As contaminated areas.


Assuntos
Antimônio/análise , Arsênio/análise , Vetiveria/crescimento & desenvolvimento , Poluentes do Solo/análise , Biodegradação Ambiental , China , Vetiveria/efeitos dos fármacos , Hidroponia , Mineração , Modelos Teóricos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento
20.
Pak J Pharm Sci ; 29(1): 131-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26826826

RESUMO

Various biological methods are being recognized for the fabrication of silver nanoparticles, which are used in several fields. The phytosynthesis of nanoparticles came out as a cost effective and enviro-friendly approach. When root bark extract of Berberis lycium was treated with silver ions, they reduced to silver nanoparticles, which were spherical, crystalline, size ranged from 10-100nm and capped by biomolecules. Synthesized silver nanoparticles were characterized by UV-visible spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and Fourier Transform Infra Red Spectroscopy (FTIR). The plant mediated synthesized silver nanoparticles showed pronounced antimicrobial activities against both Gram negative bacteria (Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeruginosa) and Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis). The plant mediated process proved to be non-toxic and low cost contender as reducing agent for synthesizing stable silver nanoparticles.


Assuntos
Anti-Infecciosos/farmacologia , Berberis , Nanopartículas Metálicas , Extratos Vegetais/farmacologia , Prata/farmacologia , Raízes de Plantas , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA