Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 67(5): 837-849, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38413437

RESUMO

AIMS/HYPOTHESIS: The aim of this study was to describe the metabolome in diabetic kidney disease (DKD) and its association with incident CVD in type 2 diabetes, and identify prognostic biomarkers. METHODS: From a prospective cohort of individuals with type 2 diabetes, baseline sera (N=1991) were quantified for 170 metabolites using NMR spectroscopy with median 5.2 years of follow-up. Associations of chronic kidney disease (CKD, eGFR<60 ml/min per 1.73 m2) or severely increased albuminuria with each metabolite were examined using linear regression, adjusted for confounders and multiplicity. Associations between DKD (CKD or severely increased albuminuria)-related metabolites and incident CVD were examined using Cox regressions. Metabolomic biomarkers were identified and assessed for CVD prediction and replicated in two independent cohorts. RESULTS: At false discovery rate (FDR)<0.05, 156 metabolites were associated with DKD (151 for CKD and 128 for severely increased albuminuria), including apolipoprotein B-containing lipoproteins, HDL, fatty acids, phenylalanine, tyrosine, albumin and glycoprotein acetyls. Over 5.2 years of follow-up, 75 metabolites were associated with incident CVD at FDR<0.05. A model comprising age, sex and three metabolites (albumin, triglycerides in large HDL and phospholipids in small LDL) performed comparably to conventional risk factors (C statistic 0.765 vs 0.762, p=0.893) and adding the three metabolites further improved CVD prediction (C statistic from 0.762 to 0.797, p=0.014) and improved discrimination and reclassification. The 3-metabolite score was validated in independent Chinese and Dutch cohorts. CONCLUSIONS/INTERPRETATION: Altered metabolomic signatures in DKD are associated with incident CVD and improve CVD risk stratification.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Insuficiência Renal Crônica , Humanos , Nefropatias Diabéticas/metabolismo , Doenças Cardiovasculares/complicações , Estudos Prospectivos , Hong Kong/epidemiologia , Albuminúria , Bancos de Espécimes Biológicos , Taxa de Filtração Glomerular , Biomarcadores , Albuminas
2.
BMJ Open Diabetes Res Care ; 12(4)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025794

RESUMO

INTRODUCTION: The association between the gut microbiome and incident type 2 diabetes (T2D) is potentially partly mediated through sphingolipids, however these possible mediating mechanisms have not been investigated. We examined whether sphingolipids mediate the association between gut microbiome and T2D, using data from the Healthy Life in an Urban Setting study. RESEARCH DESIGN AND METHODS: Participants were of Dutch or South-Asian Surinamese ethnicity, aged 18-70 years, and without T2D at baseline. A case-cohort design (subcohort n=176, cases incident T2D n=36) was used. The exposure was measured by 16S rRNA sequencing (gut microbiome) and mediator by targeted metabolomics (sphingolipids). Dimensionality reduction was achieved by principle component analysis and Shannon diversity. Cox regression and procrustes analyses were used to assess the association between gut microbiome and T2D and sphingolipids and T2D, and between gut microbiome and sphingolipids, respectively. Mediation was tested familywise using mediation analysis with permutation testing and Bonferroni correction. RESULTS: Our study confirmed associations between gut microbiome and T2D and sphingolipids and T2D. Additionally, we showed that the gut microbiome was associated with sphingolipids. The association between gut microbiome and T2D was partly mediated by a sphingolipid principal component, which represents a dominance of ceramide species over more complex sphingolipids (HR 1.17; 95% CI 1.08 to 1.28; proportional explained 48%), and by Shannon diversity (HR 0.97; 95% CI 0.95 to 0.99; proportional explained 24.8%). CONCLUSIONS: These data suggest that sphingolipids mediate the association between microbiome and T2D risk. Future research is needed to confirm observed findings and elucidate causality on a molecular level.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Esfingolipídeos , Humanos , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Esfingolipídeos/sangue , Pessoa de Meia-Idade , Masculino , Feminino , Adulto , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Adulto Jovem , Adolescente , Fatores de Risco , Seguimentos , Biomarcadores/sangue , Biomarcadores/análise , RNA Ribossômico 16S/análise , Prognóstico
3.
J Clin Endocrinol Metab ; 109(9): e1697-e1707, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38686701

RESUMO

CONTEXT: The role of glucagon-like peptide-1 (GLP-1) in type 2 diabetes (T2D) and obesity is not fully understood. OBJECTIVE: We investigate the association of cardiometabolic, diet, and lifestyle parameters on fasting and postprandial GLP-1 in people at risk of, or living with, T2D. METHODS: We analyzed cross-sectional data from the two Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohorts, cohort 1 (n = 2127) individuals at risk of diabetes; cohort 2 (n = 789) individuals with new-onset T2D. RESULTS: Our multiple regression analysis reveals that fasting total GLP-1 is associated with an insulin-resistant phenotype and observe a strong independent relationship with male sex, increased adiposity, and liver fat, particularly in the prediabetes population. In contrast, we showed that incremental GLP-1 decreases with worsening glycemia, higher adiposity, liver fat, male sex, and reduced insulin sensitivity in the prediabetes cohort. Higher fasting total GLP-1 was associated with a low intake of wholegrain, fruit, and vegetables in people with prediabetes, and with a high intake of red meat and alcohol in people with diabetes. CONCLUSION: These studies provide novel insights into the association between fasting and incremental GLP-1, metabolic traits of diabetes and obesity, and dietary intake, and raise intriguing questions regarding the relevance of fasting GLP-1 in the pathophysiology T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta , Peptídeo 1 Semelhante ao Glucagon , Estilo de Vida , Estado Pré-Diabético , Humanos , Masculino , Feminino , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Estudos Transversais , Pessoa de Meia-Idade , Estado Pré-Diabético/sangue , Estado Pré-Diabético/metabolismo , Idoso , Adulto , Resistência à Insulina , Jejum/sangue , Obesidade/sangue , Obesidade/metabolismo , Estudos de Coortes , Glicemia/metabolismo , Glicemia/análise , Adiposidade/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA