Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7781, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526625

RESUMO

Moiré superlattices engineer band properties and enable observation of fractal energy spectra of Hofstadter butterfly. Recently, correlated-electron physics hosted by flat bands in small-angle moiré systems has been at the foreground. However, the implications of moiré band topology within the single-particle framework are little explored experimentally. An outstanding problem is understanding the effect of band topology on Hofstadter physics, which does not require electron correlations. Our work experimentally studies Chern state switching in the Hofstadter regime using twisted double bilayer graphene (TDBG), which offers electric field tunable topological bands, unlike twisted bilayer graphene. Here we show that the nontrivial topology reflects in the Hofstadter spectra, in particular, by displaying a cascade of Hofstadter gaps that switch their Chern numbers sequentially while varying the perpendicular electric field. Our experiments together with theoretical calculations suggest a crucial role of charge polarization changing concomitantly with topological transitions in this system. Layer polarization is likely to play an important role in the topological states in few-layer twisted systems. Moreover, our work establishes TDBG as a novel Hofstadter platform with nontrivial magnetoelectric coupling.

2.
Adv Sci (Weinh) ; 9(23): e2105720, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35713280

RESUMO

Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto-optical methods to determine experimentally the energy band gap -a fundamental property crucial to our understanding of any solid-with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band-gap renormalization driven by Lorentz boosts which results from the Lorentz-covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies.

3.
J Phys Condens Matter ; 31(4): 045302, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30523989

RESUMO

We show that the electrical transport across a minimal model for a time-reversal symmetry breaking Weyl semi-metal (WSM) involving two Weyl nodes can be interpreted as an interferometer in momentum space. The interference phase depends on the distance between the Weyl nodes ([Formula: see text]) and is anisotropic. It is further shown that a minimal inversion symmetry broken model for a WSM with four Weyl nodes effectively mimics a situation corresponding to having two copies of the interferometer due to the presence of an orbital pseudo-spin domain wall in momentum space. We point out that the value of the [Formula: see text] and consequently the interference phase can be tuned by driving the WSMs resulting in oscillations in the two terminal conductance measured in the direction of splitting of the Weyl nodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA