Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Gastroenterology ; 165(6): 1533-1546.e4, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37657758

RESUMO

BACKGROUND & AIMS: The aims of our case-control study were (1) to develop an automated 3-dimensional (3D) Convolutional Neural Network (CNN) for detection of pancreatic ductal adenocarcinoma (PDA) on diagnostic computed tomography scans (CTs), (2) evaluate its generalizability on multi-institutional public data sets, (3) its utility as a potential screening tool using a simulated cohort with high pretest probability, and (4) its ability to detect visually occult preinvasive cancer on prediagnostic CTs. METHODS: A 3D-CNN classification system was trained using algorithmically generated bounding boxes and pancreatic masks on a curated data set of 696 portal phase diagnostic CTs with PDA and 1080 control images with a nonneoplastic pancreas. The model was evaluated on (1) an intramural hold-out test subset (409 CTs with PDA, 829 controls); (2) a simulated cohort with a case-control distribution that matched the risk of PDA in glycemically defined new-onset diabetes, and Enriching New-Onset Diabetes for Pancreatic Cancer score ≥3; (3) multi-institutional public data sets (194 CTs with PDA, 80 controls), and (4) a cohort of 100 prediagnostic CTs (i.e., CTs incidentally acquired 3-36 months before clinical diagnosis of PDA) without a focal mass, and 134 controls. RESULTS: Of the CTs in the intramural test subset, 798 (64%) were from other hospitals. The model correctly classified 360 CTs (88%) with PDA and 783 control CTs (94%), with a mean accuracy 0.92 (95% CI, 0.91-0.94), area under the receiver operating characteristic (AUROC) curve of 0.97 (95% CI, 0.96-0.98), sensitivity of 0.88 (95% CI, 0.85-0.91), and specificity of 0.95 (95% CI, 0.93-0.96). Activation areas on heat maps overlapped with the tumor in 350 of 360 CTs (97%). Performance was high across tumor stages (sensitivity of 0.80, 0.87, 0.95, and 1.0 on T1 through T4 stages, respectively), comparable for hypodense vs isodense tumors (sensitivity: 0.90 vs 0.82), different age, sex, CT slice thicknesses, and vendors (all P > .05), and generalizable on both the simulated cohort (accuracy, 0.95 [95% 0.94-0.95]; AUROC curve, 0.97 [95% CI, 0.94-0.99]) and public data sets (accuracy, 0.86 [95% CI, 0.82-0.90]; AUROC curve, 0.90 [95% CI, 0.86-0.95]). Despite being exclusively trained on diagnostic CTs with larger tumors, the model could detect occult PDA on prediagnostic CTs (accuracy, 0.84 [95% CI, 0.79-0.88]; AUROC curve, 0.91 [95% CI, 0.86-0.94]; sensitivity, 0.75 [95% CI, 0.67-0.84]; and specificity, 0.90 [95% CI, 0.85-0.95]) at a median 475 days (range, 93-1082 days) before clinical diagnosis. CONCLUSIONS: This automated artificial intelligence model trained on a large and diverse data set shows high accuracy and generalizable performance for detection of PDA on diagnostic CTs as well as for visually occult PDA on prediagnostic CTs. Prospective validation with blood-based biomarkers is warranted to assess the potential for early detection of sporadic PDA in high-risk individuals.


Assuntos
Carcinoma Ductal Pancreático , Diabetes Mellitus , Neoplasias Pancreáticas , Humanos , Inteligência Artificial , Estudos de Casos e Controles , Detecção Precoce de Câncer , Neoplasias Pancreáticas/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Carcinoma Ductal Pancreático/diagnóstico por imagem , Estudos Retrospectivos
2.
Gastroenterology ; 163(5): 1435-1446.e3, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35788343

RESUMO

BACKGROUND & AIMS: Our purpose was to detect pancreatic ductal adenocarcinoma (PDAC) at the prediagnostic stage (3-36 months before clinical diagnosis) using radiomics-based machine-learning (ML) models, and to compare performance against radiologists in a case-control study. METHODS: Volumetric pancreas segmentation was performed on prediagnostic computed tomography scans (CTs) (median interval between CT and PDAC diagnosis: 398 days) of 155 patients and an age-matched cohort of 265 subjects with normal pancreas. A total of 88 first-order and gray-level radiomic features were extracted and 34 features were selected through the least absolute shrinkage and selection operator-based feature selection method. The dataset was randomly divided into training (292 CTs: 110 prediagnostic and 182 controls) and test subsets (128 CTs: 45 prediagnostic and 83 controls). Four ML classifiers, k-nearest neighbor (KNN), support vector machine (SVM), random forest (RM), and extreme gradient boosting (XGBoost), were evaluated. Specificity of model with highest accuracy was further validated on an independent internal dataset (n = 176) and the public National Institutes of Health dataset (n = 80). Two radiologists (R4 and R5) independently evaluated the pancreas on a 5-point diagnostic scale. RESULTS: Median (range) time between prediagnostic CTs of the test subset and PDAC diagnosis was 386 (97-1092) days. SVM had the highest sensitivity (mean; 95% confidence interval) (95.5; 85.5-100.0), specificity (90.3; 84.3-91.5), F1-score (89.5; 82.3-91.7), area under the curve (AUC) (0.98; 0.94-0.98), and accuracy (92.2%; 86.7-93.7) for classification of CTs into prediagnostic versus normal. All 3 other ML models, KNN, RF, and XGBoost, had comparable AUCs (0.95, 0.95, and 0.96, respectively). The high specificity of SVM was generalizable to both the independent internal (92.6%) and the National Institutes of Health dataset (96.2%). In contrast, interreader radiologist agreement was only fair (Cohen's kappa 0.3) and their mean AUC (0.66; 0.46-0.86) was lower than each of the 4 ML models (AUCs: 0.95-0.98) (P < .001). Radiologists also recorded false positive indirect findings of PDAC in control subjects (n = 83) (7% R4, 18% R5). CONCLUSIONS: Radiomics-based ML models can detect PDAC from normal pancreas when it is beyond human interrogation capability at a substantial lead time before clinical diagnosis. Prospective validation and integration of such models with complementary fluid-based biomarkers has the potential for PDAC detection at a stage when surgical cure is a possibility.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Estudos de Casos e Controles , Neoplasias Pancreáticas/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Carcinoma Ductal Pancreático/diagnóstico por imagem , Aprendizado de Máquina , Estudos Retrospectivos , Neoplasias Pancreáticas
3.
Pancreatology ; 23(5): 522-529, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37296006

RESUMO

OBJECTIVES: To develop a bounding-box-based 3D convolutional neural network (CNN) for user-guided volumetric pancreas ductal adenocarcinoma (PDA) segmentation. METHODS: Reference segmentations were obtained on CTs (2006-2020) of treatment-naïve PDA. Images were algorithmically cropped using a tumor-centered bounding box for training a 3D nnUNet-based-CNN. Three radiologists independently segmented tumors on test subset, which were combined with reference segmentations using STAPLE to derive composite segmentations. Generalizability was evaluated on Cancer Imaging Archive (TCIA) (n = 41) and Medical Segmentation Decathlon (MSD) (n = 152) datasets. RESULTS: Total 1151 patients [667 males; age:65.3 ± 10.2 years; T1:34, T2:477, T3:237, T4:403; mean (range) tumor diameter:4.34 (1.1-12.6)-cm] were randomly divided between training/validation (n = 921) and test subsets (n = 230; 75% from other institutions). Model had a high DSC (mean ± SD) against reference segmentations (0.84 ± 0.06), which was comparable to its DSC against composite segmentations (0.84 ± 0.11, p = 0.52). Model-predicted versus reference tumor volumes were comparable (mean ± SD) (29.1 ± 42.2-cc versus 27.1 ± 32.9-cc, p = 0.69, CCC = 0.93). Inter-reader variability was high (mean DSC 0.69 ± 0.16), especially for smaller and isodense tumors. Conversely, model's high performance was comparable between tumor stages, volumes and densities (p > 0.05). Model was resilient to different tumor locations, status of pancreatic/biliary ducts, pancreatic atrophy, CT vendors and slice thicknesses, as well as to the epicenter and dimensions of the bounding-box (p > 0.05). Performance was generalizable on MSD (DSC:0.82 ± 0.06) and TCIA datasets (DSC:0.84 ± 0.08). CONCLUSION: A computationally efficient bounding box-based AI model developed on a large and diverse dataset shows high accuracy, generalizability, and robustness to clinically encountered variations for user-guided volumetric PDA segmentation including for small and isodense tumors. CLINICAL RELEVANCE: AI-driven bounding box-based user-guided PDA segmentation offers a discovery tool for image-based multi-omics models for applications such as risk-stratification, treatment response assessment, and prognostication, which are urgently needed to customize treatment strategies to the unique biological profile of each patient's tumor.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Redes Neurais de Computação , Neoplasias Pancreáticas/diagnóstico por imagem , Carcinoma Ductal Pancreático/diagnóstico por imagem , Ductos Pancreáticos
4.
Abdom Radiol (NY) ; 49(3): 964-974, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38175255

RESUMO

PURPOSE: To evaluate robustness of a radiomics-based support vector machine (SVM) model for detection of visually occult PDA on pre-diagnostic CTs by simulating common variations in image acquisition and radiomics workflow using image perturbation methods. METHODS: Eighteen algorithmically generated-perturbations, which simulated variations in image noise levels (σ, 2σ, 3σ, 5σ), image rotation [both CT image and the corresponding pancreas segmentation mask by 45° and 90° in axial plane], voxel resampling (isotropic and anisotropic), gray-level discretization [bin width (BW) 32 and 64)], and pancreas segmentation (sequential erosions by 3, 4, 6, and 8 pixels and dilations by 3, 4, and 6 pixels from the boundary), were introduced to the original (unperturbed) test subset (n = 128; 45 pre-diagnostic CTs, 83 control CTs with normal pancreas). Radiomic features were extracted from pancreas masks of these additional test subsets, and the model's performance was compared vis-a-vis the unperturbed test subset. RESULTS: The model correctly classified 43 out of 45 pre-diagnostic CTs and 75 out of 83 control CTs in the unperturbed test subset, achieving 92.2% accuracy and 0.98 AUC. Model's performance was unaffected by a three-fold increase in noise level except for sensitivity declining to 80% at 3σ (p = 0.02). Performance remained comparable vis-a-vis the unperturbed test subset despite variations in image rotation (p = 0.99), voxel resampling (p = 0.25-0.31), change in gray-level BW to 32 (p = 0.31-0.99), and erosions/dilations up to 4 pixels from the pancreas boundary (p = 0.12-0.34). CONCLUSION: The model's high performance for detection of visually occult PDA was robust within a broad range of clinically relevant variations in image acquisition and radiomics workflow.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Resiliência Psicológica , Humanos , Adenocarcinoma/diagnóstico por imagem , Neoplasias Pancreáticas/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Radiômica , Fluxo de Trabalho , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Estudos Retrospectivos
5.
Abdom Radiol (NY) ; 47(11): 3806-3816, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36085379

RESUMO

PURPOSE: To determine if pancreas radiomics-based AI model can detect the CT imaging signature of type 2 diabetes (T2D). METHODS: Total 107 radiomic features were extracted from volumetrically segmented normal pancreas in 422 T2D patients and 456 age-matched controls. Dataset was randomly split into training (300 T2D, 300 control CTs) and test subsets (122 T2D, 156 control CTs). An XGBoost model trained on 10 features selected through top-K-based selection method and optimized through threefold cross-validation on training subset was evaluated on test subset. RESULTS: Model correctly classified 73 (60%) T2D patients and 96 (62%) controls yielding F1-score, sensitivity, specificity, precision, and AUC of 0.57, 0.62, 0.61, 0.55, and 0.65, respectively. Model's performance was equivalent across gender, CT slice thicknesses, and CT vendors (p values > 0.05). There was no difference between correctly classified versus misclassified patients in the mean (range) T2D duration [4.5 (0-15.4) versus 4.8 (0-15.7) years, p = 0.8], antidiabetic treatment [insulin (22% versus 18%), oral antidiabetics (10% versus 18%), both (41% versus 39%) (p > 0.05)], and treatment duration [5.4 (0-15) versus 5 (0-13) years, p = 0.4]. CONCLUSION: Pancreas radiomics-based AI model can detect the imaging signature of T2D. Further refinement and validation are needed to evaluate its potential for opportunistic T2D detection on millions of CTs that are performed annually.


Assuntos
Diabetes Mellitus Tipo 2 , Insulinas , Abdome , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Humanos , Hipoglicemiantes , Aprendizado de Máquina , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
6.
Med Phys ; 47(2): 414-421, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31742731

RESUMO

PURPOSE: Dose-volume constraints (DVCs) continue to be common features in intensity-modulated radiation therapy (IMRT) prescriptions, but they are non-convex and difficult to incorporate. We propose computationally efficient methods to incorporate dose-volume constraints (DVCs) into automated IMRT planning. METHODS: We propose a two-phase approach: in phase-1, we solve a convex approximation with DVCs. Although this convex approximation does not guarantee DVC satisfaction, it provides crucial initial information about voxels likely to receive doses below DVC thresholds. Subsequently, phase-2 solves an optimization problem with maximum dose constraints imposed on those subthreshold voxels. We further categorize DVCs into hard- and soft-DVCs, where hard-DVCs are strictly enforced by the optimization and soft-DVCs are encouraged in the objective function. We tested this approach in our automated treatment planning system which is based on hierarchical constrained optimization. Performance is demonstrated on a series of paraspinal, lung, oligometastasis, and prostate cases as well as a small paraspinal case for which we can computationally afford to obtain a ground-truth by solving a non-convex optimization problem. RESULTS: The proposed algorithm successfully meets all the hard-DVCs while increasing the overall computational time of the baseline planning process (without DVCs) by 20%, 10%, and 11% for paraspinal, oligometastasis, and prostate cases, respectively. For a soft-DVC applied to the lung case, the dose-volume histogram curve moves toward the desired direction and the computational time is increased by 11%. For a low-resolution paraspinal case, the ground-truth solution process using mixed-integer programming methods required 15 h while the proposed algorithm converges in only 2 min with a proximal solution. CONCLUSIONS: A computationally tractable algorithm to handle hard- and soft-DVCs is developed which is capable of satisfying DVCs without any parameter tweaking. Although the algorithm is demonstrated in our in-house developed automated treatment planning system, it can potentially be used in any constrained optimization framework.


Assuntos
Doses de Radiação , Radioterapia de Intensidade Modulada/métodos , Humanos , Neoplasias Pulmonares/radioterapia , Masculino , Metástase Neoplásica , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA