Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 135(2): 295-307, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18957204

RESUMO

The alpha-pyrone antibiotic myxopyronin (Myx) inhibits bacterial RNA polymerase (RNAP). Here, through a combination of genetic, biochemical, and structural approaches, we show that Myx interacts with the RNAP "switch region"--the hinge that mediates opening and closing of the RNAP active center cleft--to prevent interaction of RNAP with promoter DNA. We define the contacts between Myx and RNAP and the effects of Myx on RNAP conformation and propose that Myx functions by interfering with opening of the RNAP active-center cleft during transcription initiation. We further show that the structurally related alpha-pyrone antibiotic corallopyronin (Cor) and the structurally unrelated macrocyclic-lactone antibiotic ripostatin (Rip) function analogously to Myx. The RNAP switch region is distant from targets of previously characterized RNAP inhibitors, and, correspondingly, Myx, Cor, and Rip do not exhibit crossresistance with previously characterized RNAP inhibitors. The RNAP switch region is an attractive target for identification of new broad-spectrum antibacterial therapeutic agents.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/química , Thermus thermophilus/enzimologia , Infecções Bacterianas/tratamento farmacológico , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lactonas/farmacologia , Modelos Moleculares , Regiões Promotoras Genéticas , Transcrição Gênica
2.
Environ Res ; 236(Pt 2): 116824, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549783

RESUMO

The highest exposure of Endocrine disrupting compounds (EDC) into the water bodies as a result of extensive production and application of Covid-19 related drugs is a growing concern now a days. Herein, a novel nanocomposite material was developed by impregnating green synthesized copper oxide nanoparticles on the porous surface of fabric waste derived biochar to eliminate the concerned EDCs along with a sustainable disposal strategy for the spent adsorbent. Morphological characterizations by Field emission scanning electron microscopy confirmed the formation of hierarchical porous structured material. X-ray analysis revealed presence of both amorphous nature of biochar matrix as well as the crystalline nature attributed from monodispersion of copper oxide nanoparticles onto biochar surface. Batch sorption study showed removal of doxycycline hydrochloride (DOX) of >97% after 2 h at pH 7, 30 mg L-1 initial concentration of DOX and 2 g L-1 of adsorbent dose at room temperature after a two-step optimization process. Spectroscopic study and Raman shift suggested that pore filling, strong complexation and electrostatic interactions maximise the adsorption of DOX in the CuO/biochar composite as compared to the pristine biochar. However disposal of spent adsorbent is a crucial aspect for the environment and therefore, a sustainable recycling strategy for DOX loaded adsorbent as electrode material has been proposed for the first time in this study. Maximum specific capacitance value was observed in the range of 221.9-297.3 F g-1 for the DOX loaded nanocomposite at 1 mV s-1 comparable with other reported heteroatom-doped carbonaceous material as electrode. Therefore the excellent adsorption capacity of green synthesized CuO/biochar composite and its recycling after DOX adsorption can be recommended as a sustainable solution for mitigation of pharmaceuticals from wastewater. A detail study on degradation of DOX into eco-friendly products and its cost-effectiveness would be beneficial to suggest appropriate mitigation strategy for such compounds.

3.
Biochem J ; 478(16): 3079-3098, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34350952

RESUMO

DevR/DosR response regulator is believed to participate in virulence, dormancy adaptation and antibiotic tolerance mechanisms of Mycobacterium tuberculosis by regulating the expression of the dormancy regulon. We have previously shown that the interaction of DevR with RNA polymerase is essential for the expression of DevR-regulated genes. Here, we developed a M. tuberculosis-specific in vivo transcription system to enrich our understanding of DevR-RNA polymerase interaction. This in vivo assay involves co-transforming E. coli with two plasmids that express α, ß, ß' and σA subunits of M. tuberculosis RNA polymerase and a third plasmid that harbors a DevR expression cassette and a GFP reporter gene under the DevR-regulated fdxA promoter. We show that DevR-dependent transcription is sponsored exclusively by M. tuberculosis RNA polymerase and regulated by α and σA subunits of M. tuberculosis RNA polymerase. Using this E. coli triple plasmid system to express mutant variants of M. tuberculosis RNA polymerase, we identified E280 residue in C-terminal domain of α and K513 and R515 residues of σA to participate in DevR-dependent transcription. In silico modeling of a ternary complex of DevR, σA domain 4 and fdxA promoter suggest an interaction of Q505, R515 and K513 residues of σA with E178 and D172 residues of DevR and E471 of σA, respectively. These findings provide us with new insights into the interactions between DevR and RNA polymerase of M. tuberculosis which can be targeted for intercepting DevR function. Finally, we demonstrate the utility of this system for screening of anti-DevR compounds.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Regiões Promotoras Genéticas/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA/química , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Conformação de Ácido Nucleico , Plasmídeos/genética , Ligação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Tuberculose/microbiologia , Virulência/genética
4.
J Digit Imaging ; 35(3): 408-423, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35166968

RESUMO

CompreHensive Digital ArchiVe of Cancer Imaging - Radiation Oncology (CHAVI-RO) is a multi-tier WEB-based medical image databank. It supports archiving de-identified radiological and clinical datasets in a relational database. A semantic relational database model is designed to accommodate imaging and treatment data of cancer patients. It aims to provide key datasets to investigate and model the use of radiological imaging data in response to radiation. This domain of research area addresses the modeling and analysis of complete treatment data of oncology patient. A DICOM viewer is integrated for reviewing the uploaded de-identified DICOM dataset. In a prototype system we carried out a pilot study with cancer data of four diseased sites, namely breast, head and neck, brain, and lung cancers. The representative dataset is used to estimate the data size of the patient. A role-based access control module is integrated with the image databank to restrict the user access limit. We also perform different types of load tests to analyze and quantify the performance of the CHAVI databank.


Assuntos
Neoplasias , Sistemas de Informação em Radiologia , Radiologia , Bases de Dados Factuais , Humanos , Projetos Piloto , Software
5.
J Digit Imaging ; 34(4): 986-1004, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34241789

RESUMO

There are various efforts in de-identifying patient's radiation oncology data for their uses in the advancement of research in medicine. Though the task of de-identification needs to be defined in the context of research goals and objectives, existing systems lack the flexibility of modeling data and normalization of names of attributes for accomplishing them. In this work, we describe a de-identification process of radiation and clinical oncology data, which is guided by a data model and a schema of dynamically capturing domain ontology and normalization of terminologies, defined in tune with the research goals in this area. The radiological images are obtained in DICOM format. It consists of diagnostic, radiation therapy (RT) treatment planning, RT verification, and RT response images. During the DICOM de-identification, a few crucial pieces of information are taken about the dataset. The proposed model is generic in organizing information modeling in sync with the de-identification of a patient's clinical information. The treatment and clinical data are provided in the comma-separated values (CSV) format, which follows a predefined data structure. The de-identified data is harmonized throughout the entire process. We have presented four specific case studies on four different types of cancers, namely glioblastoma multiforme, head-neck, breast, and lung. We also present experimental validation on a few patients' data in these four areas. A few aspects are taken care of during de-identification, such as preservation of longitudinal date changes (LDC), incremental de-identification, referential data integrity between the clinical and image data, de-identified data harmonization, and transformation of the data to an underlined database schema.


Assuntos
Objetivos , Radiologia , Bases de Dados Factuais , Humanos , Modelos Teóricos
6.
J Bacteriol ; 202(4)2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31792012

RESUMO

Variation in the concentration of biological components is inescapable for any cell. Robustness in any biological circuit acts as a cushion against such variation and enables the cells to produce homogeneous output despite the fluctuation. The two-component system (TCS) with a bifunctional sensor kinase (that possesses both kinase and phosphatase activities) is proposed to be a robust circuit. Few theoretical models explain the robustness of a TCS, although the criteria and extent of robustness by these models differ. Here, we provide experimental evidence to validate the extent of the robustness of a TCS signaling pathway. We have designed a synthetic circuit in Escherichia coli using a representative TCS of Mycobacterium tuberculosis, MprAB, and monitored the in vivo output signal by systematically varying the concentration of either of the components or both. We observed that the output of the TCS is robust if the concentration of MprA is above a threshold value. This observation is further substantiated by two in vitro assays, in which we estimated the phosphorylated MprA pool or MprA-dependent transcription yield by varying either of the components of the TCS. This synthetic circuit could be used as a model system to analyze the relationship among different components of gene regulatory networks.IMPORTANCE Robustness in essential biological circuits is an important feature of the living organism. A few pieces of evidence support the existence of robustness in vivo in the two-component system (TCS) with a bifunctional sensor kinase (SK). The assays were done under physiological conditions in which the SK was much lower than the response regulator (RR). Here, using a synthetic circuit, we varied the concentrations of the SK and RR of a representative TCS to monitor output robustness in vivo. In vitro assays were also performed under conditions where the concentration of the SK was greater than that of the RR. Our results demonstrate the extent of output robustness in the TCS signaling pathway with respect to the concentrations of the two components.


Assuntos
Proteínas de Bactérias/fisiologia , Enzimas Multifuncionais/fisiologia , Proteínas Quinases/fisiologia , Transdução de Sinais/fisiologia , Regulação Bacteriana da Expressão Gênica , Fosforilação , Transcrição Gênica
7.
J Med Syst ; 44(5): 99, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32240368

RESUMO

We propose a de-identification system which runs in a standalone mode. The system takes care of the de-identification of radiation oncology patient's clinical and annotated imaging data including RTSTRUCT, RTPLAN, and RTDOSE. The clinical data consists of diagnosis, stages, outcome, and treatment information of the patient. The imaging data could be the diagnostic, therapy planning, and verification images. Archival of the longitudinal radiation oncology verification images like cone beam CT scans along with the initial imaging and clinical data are preserved in the process. During the de-identification, the system keeps the reference of original data identity in encrypted form. These could be useful for the re-identification if necessary.


Assuntos
Anonimização de Dados/normas , Registros Eletrônicos de Saúde/organização & administração , Radioterapia (Especialidade)/organização & administração , Tomografia Computadorizada de Feixe Cônico/métodos , Registros Eletrônicos de Saúde/normas , Humanos , Processamento de Imagem Assistida por Computador/métodos , Radioterapia (Especialidade)/normas
8.
Microbiology (Reading) ; 164(9): 1168-1179, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30024363

RESUMO

Mycobacteriophage D29 is a lytic phage that infects various species of Mycobacterium including M. tuberculosis. Its genome has 77 genes distributed almost evenly between two converging operons designated as left and right. Transcription of the phage genome is negatively regulated by multiple copies of an operator-like element known as stoperator that acts by binding the phage repressor Gp71. The function of the D29 genes and their expression status are poorly understood and therefore we undertook a transcriptome analysis approach to address these issues. The results indicate that the average transcript intensity of the right arm genes was higher than of those on the left, at the early stage of infection. Moreover, the fold increase from early to the late stage was found to be less for the right arm genes than for the left. Both observations support the prediction that the right arm genes are expressed early whereas the left arm ones are expressed late. The analysis further revealed a break in the continuity of the right arm operon between 89, the first gene in it, and 88, the next. Gene 88 was found to be expressed from a newly identified promoter located between 88 and 89. Another new promoter was found upstream of 89. Thus, the promoter Pleft, identified earlier, is not the only one that drives expression of the right arm genes. All these promoters overlap with stoperators, with which they share a conserved sequence motif, TTGACA, commonly known as the -35 promoter element. We demonstrate mutually exclusive binding of RNA polymerase and Gp71 to the stoperator-promoters and conclude that stoperators can function as -35 promoter elements and that they can control gene expression not only negatively as was believed earlier but in many cases positively as well.


Assuntos
Perfilação da Expressão Gênica , Micobacteriófagos/genética , Mycobacterium tuberculosis/virologia , Óperon , Regiões Promotoras Genéticas , Genes Virais , Proteínas Virais/biossíntese , Proteínas Virais/genética
9.
J Biol Chem ; 291(46): 24029-24035, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27679485

RESUMO

δ, a small protein found in most Gram-positive bacteria was, for a long time, thought to be a subunit of RNA polymerase (RNAP) and was shown to be involved in recycling of RNAP at the end of each round of transcription. However, how δ participates in both up-regulation and down-regulation of genes in vivo remains unclear. We have recently shown, in addition to the recycling of RNAP, δ functions as a transcriptional activator by binding to an A-rich sequence located immediately upstream of the -35 element, consequently facilitating the open complex formation. The result had explained the mechanism of up-regulation of the genes by δ. Here, we show that Bacillus subtilis δ could also function as a transcriptional repressor. Our results demonstrate that δ binds to an A-rich sequence located near the -35 element of the spo0B promoter, the gene involved in the regulatory cascade of bacterial sporulation and inhibits the open complex formation due to steric clash with σ region 4.2. We observed a significant increase in the mRNA level of the spo0B gene in a δ-knock-out strain of B. subtilis compared with the wild-type. Thus, the results report a novel function of δ, and suggest the mechanism of down-regulation of genes in vivo by the protein.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas Repressoras/metabolismo , Elementos de Resposta/fisiologia , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas Repressoras/genética , Esporos Bacterianos/genética
10.
J Biol Chem ; 291(3): 1064-75, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546673

RESUMO

Most bacterial RNA polymerases (RNAP) contain five conserved subunits, viz. 2α, ß, ß', and ω. However, in many Gram-positive bacteria, especially in fermicutes, RNAP is associated with an additional factor, called δ. For over three decades since its identification, it had been thought that δ functioned as a subunit of RNAP to enhance the level of transcripts by recycling RNAP. In support of the previous observations, we also find that δ is involved in recycling of RNAP by releasing the RNA from the ternary complex. We further show that δ binds to RNA and is able to recycle RNAP when the length of the nascent RNA reaches a critical length. However, in this work we decipher a new function of δ. Performing biochemical and mutational analysis, we show that Bacillus subtilis δ binds to DNA immediately upstream of the promoter element at A-rich sequences on the abrB and rrnB1 promoters and facilitates open complex formation. As a result, δ facilitates RNAP to initiate transcription in the second scale, compared with minute scale in the absence of δ. Using transcription assay, we show that δ-mediated recycling of RNAP cannot be the sole reason for the enhancement of transcript yield. Our observation that δ does not bind to RNAP holo enzyme but is required to bind to DNA upstream of the -35 promoter element for transcription activation suggests that δ functions as a transcriptional regulator.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator sigma/metabolismo , Iniciação da Transcrição Genética , Sequência Rica em At , Proteínas de Bactérias/genética , Pegada de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Polarização de Fluorescência , Corantes Fluorescentes , Mutagênese Sítio-Dirigida , Mutação Puntual , Regiões Promotoras Genéticas , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Proteínas Recombinantes/metabolismo , Rodaminas/química , Fator sigma/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica
11.
Nucleic Acids Res ; 43(12): 5855-67, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-25999340

RESUMO

We propose a novel mechanism of gene regulation in Mycobacterium tuberculosis where the protein Rv1222 inhibits transcription by anchoring RNA polymerase (RNAP) onto DNA. In contrast to our existing knowledge that transcriptional repressors function either by binding to DNA at specific sequences or by binding to RNAP, we show that Rv1222-mediated transcription inhibition requires simultaneous binding of the protein to both RNAP and DNA. We demonstrate that the positively charged C-terminus tail of Rv1222 is responsible for anchoring RNAP on DNA, hence the protein slows down the movement of RNAP along the DNA during transcription elongation. The interaction between Rv1222 and DNA is electrostatic, thus the protein could inhibit transcription from any gene. As Rv1222 slows down the RNA synthesis, upon expression of the protein in Mycobacterium smegmatis or Escherichia coli, the growth rate of the bacteria is severely impaired. The protein does not possess any significant affinity for DNA polymerase, thus, is unable to inhibit DNA synthesis. The proposed mechanism by which Rv1222 inhibits transcription reveals a new repertoire of prokaryotic gene regulation.


Assuntos
Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas de Bactérias/química , DNA Bacteriano/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Ligação Proteica , RNA/biossíntese , Fator sigma/antagonistas & inibidores , Fatores de Transcrição/química
12.
Biophys J ; 111(8): 1724-1737, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27760359

RESUMO

There is a significant need for developing compounds that kill Cryptococcus neoformans, the fungal pathogen that causes meningoencephalitis in immunocompromised individuals. Here, we report the mode of action of a designed antifungal peptide, VG16KRKP (VARGWKRKCPLFGKGG) against C. neoformans. It is shown that VG16KRKP kills fungal cells mainly through membrane compromise leading to efflux of ions and cell metabolites. Intracellular localization, inhibition of in vitro transcription, and DNA binding suggest a secondary mode of action for the peptide, hinting at possible intracellular targets. Atomistic structure of the peptide determined by NMR experiments on live C. neoformans cells reveals an amphipathic arrangement stabilized by hydrophobic interactions among A2, W5, and F12, a conventional folding pattern also known to play a major role in peptide-mediated Gram-negative bacterial killing, revealing the importance of this motif. These structural details in the context of live cell provide valuable insights into the design of potent peptides for effective treatment of human and plant fungal infections.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Sequência de Bases , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Cryptococcus neoformans/citologia , DNA/química , DNA/genética , DNA/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico
13.
J Biol Chem ; 290(47): 28575-28583, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26400263

RESUMO

The transition from the formation of the RNA polymerase (RNAP)-promoter open complex step to the productive elongation complex step involves "promoter escape" of RNAP. From the structure of RNAP, a promoter escape model has been proposed that suggests that the interactions between σR4 and RNAP and σR4 and DNA are destabilized upon transition to elongation. This accounts for the reduced affinity of σ to RNAP and stochastic release of σ. However, as the loss of interaction of σR4 with RNAP results in the release of intact σ, assessing this interaction remains challenging to be experimentally verified. Here we study the promoter escape model using a two-component σ factor YvrI and YvrHa from Bacillus subtilis that independently contributes to the functions of σR4 and σR2 in a RNAP-promoter complex. Our results show that YvrI, which mimics σR4, is released gradually as transcription elongation proceeds, whereas YvrHa, which mimics σR2 is retained throughout the elongation complexes. Thus our result validates the proposed model for promoter escape and also suggests that promoter escape involves little or no change in the interaction of σR2 with RNAP.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Regiões Promotoras Genéticas , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo
14.
Plant Mol Biol ; 92(3): 371-88, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27503561

RESUMO

ARID-HMG DNA-binding proteins represent a novel group of HMG-box containing protein family where the AT-rich interaction domain (ARID) is fused with the HMG-box domain in a single polypeptide chain. ARID-HMG proteins are highly plant specific with homologs found both in flowering plants as well as in moss such as Physcomitrella. The expression of these proteins is ubiquitous in plant tissues and primarily localises in the cell nucleus. HMGB proteins are involved in several nuclear processes, but the role of ARID-HMG proteins in plants remains poorly explored. Here, we performed DNA-protein interaction studies with Arabidopsis ARID-HMG protein HMGB11 (At1g55650) to understand the functionality of this protein and its individual domains. DNA binding assays revealed that AtHMGB11 can bind double-stranded DNA with a weaker affinity (Kd = 475 ± 17.9 nM) compared to Arabidopsis HMGB1 protein (Kd = 39.8 ± 2.68 nM). AtHMGB11 also prefers AT-rich DNA as a substrate and shows structural bias for supercoiled DNA. Molecular docking of the DNA-AtHMGB11 complex indicated that the protein interacts with the DNA major groove, mainly through its ARID domain and the junction region connecting the ARID and the HMG-box domain. Also, predicted by the docking model, mutation of Lys(85) from the ARID domain and Arg(199) & Lys(202) from the junction region affects the DNA binding affinity of AtHMGB11. In addition, AtHMGB11 and its truncated form containing the HMG-box domain can not only promote DNA mini-circle formation but are also capable of inducing negative supercoils into relaxed plasmid DNA suggesting the involvement of this protein in several nuclear events. Overall, the study signifies that both the ARID and the HMG-box domain contribute to the optimal functioning of ARID-HMG protein in vivo.

15.
J Bacteriol ; 197(3): 646-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25448818

RESUMO

Development of an in vivo gene reporter assay to assess interactions among the components of the transcription machinery in Mycobacterium tuberculosis remains a challenge to scientists due to the tediousness of generation of mutant strains of the extremely slow-growing bacterium. We have developed a recombinant mCherry reporter assay that enables us to monitor the interactions of Mycobacterium tuberculosis transcriptional regulators with its promoters in vivo in Escherichia coli. The assay involves a three-plasmid expression system in E. coli wherein two plasmids are responsible for M. tuberculosis RNA polymerase (RNAP) production and the third plasmid harbors the mCherry reporter gene expression cassette under the control of either a σ factor or a transcriptional regulator-dependent promoter. We observed that the endogenous E. coli RNAP and σ factor do not interfere with the assay. By using the reporter assay, we found that the functional interaction of M. tuberculosis cyclic AMP receptor protein (CRP) occurs with its own RNA polymerase, not with the E. coli polymerase. Performing the recombinant reporter assay in E. coli is much faster than if performed in M. tuberculosis and avoids the hazard of handling the pathogenic bacterium. The approach could be expanded to develop reporter assays for other pathogenic and slow-growing bacterial systems.


Assuntos
Genes Reporter , Genética Microbiana/métodos , Biologia Molecular/métodos , Mycobacterium tuberculosis/genética , Recombinação Genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fusão Gênica Artificial , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Expressão Gênica , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Plasmídeos , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/genética , Proteína Vermelha Fluorescente
17.
Microbiology (Reading) ; 161(6): 1271-81, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25833257

RESUMO

The resuscitation-promoting factors of Mycobacterium tuberculosis are hydrolytic enzymes, which are required for resuscitation of dormant cells. RpfB, a peptidoglycan remodelling enzyme similar to the lytic transglycosylase of Escherichia coli, is required for reactivation of M. tuberculosis from chronic infection in vivo, underscoring the need to understand its transcriptional regulation. Here, we identified the transcriptional and translational start points of rpfB, and suggested from rpf promoter-driven GFP expression and in vitro transcription assays that its transcription possibly occurs in a SigB-dependent manner. We further demonstrated that rpfB transcription is regulated by MtrA - the response regulator of the essential two-component system MtrAB. Association of MtrA with the rpfB promoter region in vivo was confirmed by chromatin immunoprecipitation analysis. Electrophoretic mobility shift assays (EMSAs) revealed a loose direct repeat sequence associated with MtrA binding. Binding of MtrA was enhanced upon phosphorylation. MtrA could be pulled down from lysates of M. tuberculosis using a biotinylated DNA fragment encompassing the MtrA-binding site on the rpfB promoter, confirming that MtrA binds to the rpfB promoter. Enhanced GFP fluorescence driven by the rpfB promoter, upon deletion of the MtrA-binding site, and repression of rpfB expression, upon overexpression of MtrA, suggested that MtrA functions as a repressor of rpfB transcription. This was corroborated by EMSAs showing diminished association of RNA polymerase (RNAP) with the rpfB promoter in the presence of MtrA. In vitro transcription assays confirmed that MtrA inhibits RNAP-driven rpfB transcription.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Hidrolases/biossíntese , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Transcrição Gênica , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Iniciação Traducional da Cadeia Peptídica , Regiões Promotoras Genéticas , Ligação Proteica , Sítio de Iniciação de Transcrição
19.
Assist Technol ; 26(4): 186-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25771603

RESUMO

A wearable assistive system is proposed to improve mobility of visually impaired people (subjects). This system has been implemented in the shape of a bracelet and waist-belt in order to increase its wearable convenience and cosmetic acceptability. A camera and an ultrasonic sensor are attached to a customized waist-belt and bracelet, respectively. The proposed modular system will act as a complementary aid along with a white cane. Its vision-enabled waist-belt module detects the path and distribution of obstacles on the path. This module conveys the required information to a subject via a mono earphone by activating relevant spoken messages. The electronic bracelet module assists the subject to verify this information and to perceive distance of obstacles along with their locations. The proposed complementary system provides an improved understanding of the surrounding environment with less cognitive and perceptual efforts as compared to a white cane alone. This system was subjected to clinical evaluations with 15 totally blind subjects. Results of usability experiments demonstrated effectiveness of the system as a mobility aid. Amongst the participated subjects, 93.33% expressed satisfaction with the information content of this system, 86.66% subjects comprehended its operational convenience, and 80% appreciated the comfort of the system.


Assuntos
Tecnologia Assistiva , Pessoas com Deficiência Visual , Caminhada , Abdome , Bengala , Eletrônica , Desenho de Equipamento , Humanos , Satisfação do Paciente , Punho
20.
JAMIA Open ; 7(3): ooae089, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39282084

RESUMO

Objective: During the 2-year maintenance treatment phase (MT) of acute lymphoblastic leukemia (ALL), personalized patient-specified titration of oral antimetabolite drug doses is required to ensure maximum tolerated systemic drug exposure. Drug titration is difficult to implement in practice and insufficient systemic drug exposure resulting from inadequate dose titration increases risk of ALL relapse. Materials and Methods: We developed an open-source R-based analytical toolkit, including the allMT R package and an interactive web-based R Shiny VIATAMIN application, to evaluate antimetabolite drug titration during MT. Results: Evaluation is initiated with basic visualization analysis of drug titration, in both individual patients and patient cohorts. Observations are supplemented with descriptive analyses of hematological toxicity frequency and prescriber compliance rates with protocol drug titration rules. In individual patients, visual and quantitative analyses indicate recurring potentially correctable suboptimal drug titration patterns. In patient cohorts, the toolkit enables evaluation of the impact of interventions to optimize MT drug titration. Discussion: Incorporation of the toolkit in a forthcoming clinical decision support system for MT would enable real-time examination and course correction of drug titration practice. Conclusion: Future versions will be enhanced to include other variables that influence drug titration practice, including clinical toxicity data and later, pharmacological markers of antimetabolite, adherence, and drug activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA