Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2400643, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923700

RESUMO

Although small-interfering RNAs (siRNAs) are specific silencers for numerous disease-related genes, their clinical applications still require safe and effective means of delivery into target cells. Highly efficient lipid nanoparticles (LNPs) are developed for siRNA delivery, showcasing the advantages of novel pH-responsive lipoamino xenopeptide (XP) carriers. These sequence-defined XPs are assembled by branched lysine linkages between cationizable polar succinoyl tetraethylene pentamine (Stp) units and apolar lipoamino fatty acids (LAFs) at various ratios into bundle or U-shape topologies. Formulation of siRNA-LNPs using LAF4-Stp1 XPs as ionizable compounds led to robust cellular uptake, high endosomal escape, and successful in vitro gene silencing activity at an extremely low (150 picogram) siRNA dose. Of significance is the functional in vivo endothelium tropism of siRNA-LNPs with bundle LAF4-Stp1 XP after intravenous injection into mice, demonstrated by superior knockdown of liver sinusoidal endothelial cell (LSEC)-derived factor VIII (FVIII) and moderate silencing of hepatocyte-derived FVII compared to DLin-MC3-DMA-based LNPs. Optimizing lipid composition following click-modification of siRNA-LNPs with ligand c(RGDfK) efficiently silenced vascular endothelial growth factor receptor-2 (VEGFR-2) in tumor endothelial cells (TECs). The findings shed light on the role of ionizable XPs in the LNP in vivo cell-type functional targeting, laying the groundwork for future therapeutic applications.

2.
Pharmacol Res ; 201: 107107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354869

RESUMO

In recent years, isothiocyanates (ITCs), bioactive compounds primarily derived from Brassicaceae vegetables and herbs, have gained significant attention within the biomedical field due to their versatile biological effects. This comprehensive review provides an in-depth exploration of the therapeutic potential and individual biological mechanisms of the three specific ITCs phenylethyl isothiocyanate (PEITC), allyl isothiocyanate (AITC), and benzyl isothiocyanate (BITC), as well as their collective impact within the formulation of ANGOCIN® Anti-Infekt N (Angocin). Angocin comprises horseradish root (Armoracia rusticanae radix, 80 mg) and nasturtium (Tropaeoli majoris herba, 200 mg) and is authorized for treating inflammatory diseases affecting the respiratory and urinary tract. The antimicrobial efficacy of this substance has been confirmed both in vitro and in various clinical trials, with its primary effectiveness attributed to ITCs. PEITC, AITC, and BITC exhibit a wide array of health benefits, including potent anti-inflammatory, antioxidant, and antimicrobial properties, along with noteworthy anticancer potentials. Moreover, we highlight their ability to modulate critical biochemical pathways, such as the nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and signal transducer and activator of transcription (STAT) pathways, shedding light on their involvement in cellular apoptosis and their intricate role to guide immune responses.


Assuntos
Anti-Infecciosos , Fator 2 Relacionado a NF-E2 , Proteína 1 Associada a ECH Semelhante a Kelch , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico
3.
Strahlenther Onkol ; 199(12): 1214-1224, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37658922

RESUMO

PURPOSE: Radiotherapy is a major pillar in the treatment of solid tumors including breast cancer. However, epidemiological studies have revealed an increase in cardiac diseases approximately a decade after exposure of the thorax to ionizing irradiation, which might be related to vascular inflammation. Therefore, chronic inflammatory effects were examined in primary heart and lung endothelial cells (ECs) of mice after local heart irradiation. METHODS: Long-lasting effects on primary ECs of the heart and lung were studied 20-50 weeks after local irradiation of the heart of mice (8 and 16 Gy) in vivo by multiparameter flow cytometry using antibodies directed against cell surface markers related to proliferation, stemness, lipid metabolism, and inflammation, and compared to those induced by occlusion of the left anterior descending coronary artery. RESULTS: In vivo irradiation of the complete heart caused long-lasting persistent upregulation of inflammatory (HCAM, ICAM­1, VCAM-1), proliferation (CD105), and lipid (CD36) markers on primary heart ECs and an upregulation of ICAM­1 and VCAM­1 on primary ECs of the partially irradiated lung lobe. An artificially induced heart infarction induces similar effects with respect to inflammatory markers, albeit in a shorter time period. CONCLUSION: The long-lasting upregulation of prominent inflammatory markers on primary heart and lung ECs suggests that local heart irradiation induces chronic inflammation in the microvasculature of the heart and partially irradiated lung that leads to cardiac injury which might be related to altered lipid metabolism in the heart.


Assuntos
Aterosclerose , Molécula 1 de Adesão Intercelular , Camundongos , Animais , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Molécula 1 de Adesão de Célula Vascular , Inflamação , Aterosclerose/etiologia , Tórax , Camundongos Endogâmicos C57BL
4.
Br J Cancer ; 126(10): 1470-1480, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35314795

RESUMO

BACKGROUND: Response to immune checkpoint blockade (ICB) in ovarian cancer remains disappointing. Several studies have identified the chemokine CXCL9 as a robust prognosticator of improved survival in ovarian cancer and a characteristic of the immunoreactive subtype, which predicts ICB response. However, the function of CXCL9 in ovarian cancer has been poorly studied. METHODS: Impact of Cxcl9 overexpression in the murine ID8-Trp53-/- and ID8-Trp53-/-Brca2-/- ovarian cancer models on survival, cellular immune composition, PD-L1 expression and anti-PD-L1 therapy. CXCL9 expression analysis in ovarian cancer subtypes and correlation to reported ICB response. RESULTS: CXCL9 overexpression resulted in T-cell accumulation, delayed ascites formation and improved survival, which was dependent on adaptive immune function. In the ICB-resistant mouse model, the chemokine was sufficient to enable a successful anti-PD-L1 therapy. In contrast, these effects were abrogated in Brca2-deficient tumours, most likely due to an already high intrinsic chemokine expression. Finally, in ovarian cancer patients, the clear-cell subtype, known to respond best to ICB, displayed a significantly higher proportion of CXCL9high tumours than the other subtypes. CONCLUSIONS: CXCL9 is a driver of successful ICB in preclinical ovarian cancer. Besides being a feasible predictive biomarker, CXCL9-inducing agents thus represent attractive combination partners to improve ICB in this cancer entity.


Assuntos
Antígeno B7-H1 , Quimiocina CXCL9 , Inibidores de Checkpoint Imunológico , Neoplasias Ovarianas , Animais , Antígeno B7-H1/antagonistas & inibidores , Quimiocina CXCL9/genética , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética
5.
Cell Physiol Biochem ; 56(6): 613-628, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36378153

RESUMO

BACKGROUND/AIMS: The renal inflammatory response and kidney regeneration in ischemia-reperfusion injury (IRI) are associated with Toll-like receptor 4 (TLR4). Here we study the role of TLR4 during IRI in the renal cortex and medulla separately, using wild-type (TLR4-WT) and Knockout (TLR4-KO) TLR4 mice. METHODS: We used 30 minutes of bilateral renal ischemia, followed by 48 hours of reperfusion in C57BL/6 mice. We measured the expression of elements associated with kidney injury, inflammation, macrophage polarization, mesenchymal transition, and proteostasis in the renal cortex and medulla by qRT-PCR and Western blot. In addition, we studied kidney morphology by H/E and PAS. RESULTS: Renal ischemia (30min) and reperfusion (48hrs) induced the mRNA and protein of TLR4 in the renal cortex. In addition, Serum Creatinine (SCr), blood urea nitrogen (BUN), Neutrophil gelatinase-associated lipocalin (NGAL), and acute tubular necrosis (ATN) were increased in TLR4-WT by IRI. Interestingly, the SCr and BUN had normal levels in TLR-KO during IRI. However, ATN and high levels of NGAL were present in the kidneys of TLR4-KO mice. The pro-inflammatory (IL-6 and TNF-α) and anti-inflammatory (Foxp3 and IL-10) markers increased by IRI only in the cortex of TLR4-WT but not in TLR4-KO mice. Furthermore, the M1 (CD38 and Frp2) and M2 (Arg-I, Erg-2, and c-Myc) macrophage markers increased by IRI only in the cortex of TLR4-WT. The TLR4-KO blunted the IRI-upregulation of M1 but not the M2 macrophage polarization. Vimentin increased in the renal cortex and medulla of TLR4-WT animals but not in the cortex of TLR4-KO mice. In addition, iNOS and clusterin were increased by IRI only in the cortex of TLR4-WT, and the absence of TLR4 inhibited only clusterin upregulation. Finally, Hsp27 and Hsp70 protein levels increased by IRI in the cortex and medulla of TLR4-WT and TRL4-KO lost the IRI-upregulation of Hsp70. In summary, TLR4 participates in renal ischemia and reperfusion through pro-inflammatory and anti-inflammatory responses inducing impaired kidney function (SCr and BUN). However, the IRI-upregulation of M2 macrophage markers (cortex), iNOS (cortex), IL-6 (medulla), vimentin (medulla), and Hsp27 (cortex and medulla) were independent of TLR4. CONCLUSION: The TLR4 inactivation during IRI prevented the loss of renal function due to the inactivation of inflammation response, avoiding M1 and preserving the M2 macrophage polarization in the renal cortex.


Assuntos
Nefropatias , Traumatismo por Reperfusão , Animais , Camundongos , Clusterina/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Inflamação/complicações , Interleucina-6/genética , Interleucina-6/metabolismo , Isquemia , Rim/metabolismo , Córtex Renal/metabolismo , Nefropatias/complicações , Lipocalina-2/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regeneração , Traumatismo por Reperfusão/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Vimentina/metabolismo
6.
Eur J Nucl Med Mol Imaging ; 49(6): 2049-2063, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34882260

RESUMO

PURPOSE: The incidence of esophageal adenocarcinoma (EAC) has been increasing for decades without significant improvements in treatment. Barrett's esophagus (BE) is best established risk factor for EAC, but current surveillance with random biopsies cannot predict progression to cancer in most BE patients due to the low sensitivity and specificity of high-definition white light endoscopy. METHODS: Here, we evaluated the membrane-bound highly specific Hsp70-specific contrast agent Tumor-Penetrating Peptide (Hsp70-TPP) in guided fluorescence molecular endoscopy biopsy. RESULTS: Hsp70 was significantly overexpressed as determined by IHC in dysplasia and EAC compared with non-dysplastic BE in patient samples (n = 12) and in high-grade dysplastic lesions in a transgenic (L2-IL1b) mouse model of BE. In time-lapse microscopy, Hsp70-TPP was rapidly taken up and internalized  by human BE dysplastic patient-derived organoids. Flexible fluorescence endoscopy of the BE mouse model allowed a specific detection of Hsp70-TPP-Cy5.5 that corresponded closely with the degree of dysplasia but not BE. Ex vivo application of Hsp70-TPP-Cy5.5 to freshly resected whole human EAC specimens revealed a high (> 4) tumor-to-background ratio and a specific detection of previously undetected tumor infiltrations. CONCLUSION: In summary, these findings suggest that Hsp70-targeted imaging using fluorescently labeled TPP peptide may improve tumor surveillance in BE patients.


Assuntos
Adenocarcinoma , Esôfago de Barrett , Neoplasias Esofágicas , Adenocarcinoma/patologia , Animais , Esôfago de Barrett/diagnóstico por imagem , Esôfago de Barrett/epidemiologia , Biópsia , Neoplasias Esofágicas/diagnóstico por imagem , Esofagoscopia/métodos , Humanos , Camundongos
7.
Mol Ther ; 29(2): 788-803, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33068779

RESUMO

The tropism of mesenchymal stem cells (MSCs) for tumors forms the basis for their use as delivery vehicles for the tumor-specific transport of therapeutic genes, such as the theranostic sodium iodide symporter (NIS). Hyperthermia is used as an adjuvant for various tumor therapies and has been proposed to enhance leukocyte recruitment. Here, we describe the enhanced recruitment of adoptively applied NIS-expressing MSCs to tumors in response to regional hyperthermia. Hyperthermia (41°C, 1 h) of human hepatocellular carcinoma cells (HuH7) led to transiently increased production of immunomodulatory factors. MSCs showed enhanced chemotaxis to supernatants derived from heat-treated cells in a 3D live-cell tracking assay and was validated in vivo in subcutaneous HuH7 mouse xenografts. Cytomegalovirus (CMV)-NIS-MSCs were applied 6-48 h after or 24-48 h before hyperthermia treatment. Using 123I-scintigraphy, thermo-stimulation (41°C, 1 h) 24 h after CMV-NIS-MSC injection resulted in a significantly increased uptake of 123I in heat-treated tumors compared with controls. Immunohistochemical staining and real-time PCR confirmed tumor-selective, temperature-dependent MSC migration. Therapeutic efficacy was significantly enhanced by combining CMV-NIS-MSC-mediated 131I therapy with regional hyperthermia. We demonstrate here for the first time that hyperthermia can significantly boost tumoral MSC recruitment, thereby significantly enhancing therapeutic efficacy of MSC-mediated NIS gene therapy.


Assuntos
Fibroblastos Associados a Câncer , Movimento Celular , Hipertermia Induzida , Células-Tronco Mesenquimais/metabolismo , Células Estromais/metabolismo , Animais , Movimento Celular/imunologia , Modelos Animais de Doenças , Humanos , Transplante de Células-Tronco Mesenquimais , Camundongos , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Adv Exp Med Biol ; 1395: 263-267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36527647

RESUMO

To maintain a multitude of vital functions, blood flow to the normal liver and the hepatic oxygenation status has to be kept on a high level (1.0-1.2 mL/g/min and 30-40 mmHg, respectively). There is a longitudinal oxygen partial pressure (pO2) gradient within the liver sinusoids between periportal inflow and outflow into the central vein leading to a zonation of the O2 status, which is associated with a zoning of liver functions. Oxygenation of metastatic lesions of colorectal cancers in the liver is poor due to a dysfunctional vascularity and inadequate blood supply. Hepatocellular carcinomas (HCCs) are highly vascularised (arterialised), metabolically very active and present with a predominantly arterial blood supply. HCCs are generally believed to be very hypoxic. However, confirmation of severe hypoxia based on reliable, direct pO2 measurements in HCCs is still missing.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Oxigênio , Fígado/irrigação sanguínea , Hipóxia
9.
Adv Exp Med Biol ; 1395: 379-384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36527666

RESUMO

Reliable measurements using modern techniques and consensus in experimental design have enabled the assessment of novel data sets for normal maternal and foetal respiratory physiology at term. These data sets include (a) principal factors affecting placental gas transfer, e.g., maternal blood flow through the intervillous space (IVS) (500 mL/min) and foeto-placental blood flow (480 mL/min), and (b) O2, CO2 and pH levels in the materno-placental and foeto-placental circulation. According to these data, the foetus is adapted to hypoxaemic hypoxia. Despite flat oxygen partial pressure (pO2) gradients between the blood of the IVS and the umbilical arteries of the foetus, adequate O2 delivery to the foetus is maintained by the higher O2 affinity of the foetal blood, high foetal haemoglobin (HbF) concentrations, the Bohr effect, the double-Bohr effect, and high foeto-placental (=umbilical) blood flow. Again, despite flat gradients, adequate CO2 removal from the foetus is maintained by a high diffusion capacity, high foeto-placental blood flow, the Haldane effect, and the double-Haldane effect. Placental respiratory gas exchange is perfusion-limited, rather than diffusion-limited, i.e., O2 uptake depends on O2 delivery.


Assuntos
Dióxido de Carbono , Feto , Troca Materno-Fetal , Oxigênio , Placenta , Circulação Placentária , Feminino , Humanos , Gravidez , Dióxido de Carbono/fisiologia , Sangue Fetal/fisiologia , Hemoglobina Fetal/fisiologia , Feto/fisiologia , Hipóxia/fisiopatologia , Troca Materno-Fetal/fisiologia , Oxigênio/fisiologia , Oxiemoglobinas/fisiologia , Placenta/irrigação sanguínea , Placenta/fisiologia , Circulação Placentária/fisiologia , Nascimento a Termo/fisiologia
10.
J Physiol ; 599(6): 1745-1757, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33347611

RESUMO

Contrary to Warburg's original thesis, accelerated aerobic glycolysis is not a primary, permanent and universal consequence of dysfunctional or impaired mitochondria compensating for poor ATP yield per mole of glucose. Instead, in most tumours the Warburg effect is an essential part of a 'selfish' metabolic reprogramming, which results from the interplay between (normoxic/hypoxic) hypoxia-inducible factor-1 (HIF-1) overexpression, oncogene activation (cMyc, Ras), loss of function of tumour suppressors (mutant p53, mutant phosphatase and tensin homologue (PTEN), microRNAs and sirtuins with suppressor functions), activated (PI3K-Akt-mTORC1, Ras-Raf-MEK-ERK-cMyc, Jak-Stat3) or deactivated (LKB1-AMPK) signalling pathways, components of the tumour microenvironment, and HIF-1 cooperation with epigenetic mechanisms. Molecular and functional processes of the Warburg effect include: (a) considerable acceleration of glycolytic fluxes; (b) adequate ATP generation per unit time to maintain energy homeostasis and electrochemical gradients; (c) backup and diversion of glycolytic intermediates facilitating the biosynthesis of nucleotides, non-essential amino acids, lipids and hexosamines; (d) inhibition of pyruvate entry into mitochondria; (e) excessive formation and accumulation of lactate, which stimulates tumour growth and suppression of anti-tumour immunity - in addition, lactate can serve as an energy source for normoxic cancer cells and drives malignant progression and resistances to conventional therapies; (f) cytosolic lactate being mainly exported through upregulated lactate-proton symporters (MCT4), working together with other H+ transporters, and carbonic anhydrases (CAII, CAIX), which hydrate CO2 from oxidative metabolism to form H+ and bicarbonate; (g) these proton export mechanisms, in concert with poor vascular drainage, being responsible for extracellular acidification, driving malignant progression and resistance to conventional therapies; (h) maintenance of the cellular redox homeostasis and low reactive oxygen species (ROS) formation; and (i) HIF-1 overexpression, mutant p53 and mutant PTEN, which inhibit mitochondrial biogenesis and functions, negatively impacting cellular respiration rate. The glycolytic switch is an early event in oncogenesis and primarily supports cell survival. All in all, the Warburg effect, i.e. aerobic glycolysis in the presence of oxygen and - in principle - functioning mitochondria, constitutes a major driver of the cancer progression machinery, resistance to conventional therapies, and poor patient outcome. However, as evidenced during the last two decades, in a minority of tumours primary mitochondrial defects can play a key role promoting the Warburg effect and tumour progression due to mutations in some Krebs cycle enzymes and mitochondrial ROS overproduction.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Glucose , Glicólise , Humanos , Microambiente Tumoral
11.
Adv Exp Med Biol ; 1269: 169-177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33966213

RESUMO

Contrary to Warburg's original thesis, accelerated aerobic glycolysis is not a primary and permanent consequence of dysfunctional mitochondria compensating for a poor ATP yield per mole glucose. Instead, the Warburg effect is an essential part of a "selfish" metabolic reprogramming, which results from the interplay between (normoxic or hypoxic) HIF-1 overexpression, oncogene activation (cMyc, Ras), loss of function of tumor suppressors (mutant p53, mutant PTEN, microRNAs and sirtuins with suppressor functions), activated (PI3K/Akt/mTORC1, Ras/Raf/Mek/Erk/c-Myc) or deactivated (AMPK) signaling pathways, components of the tumor microenvironment, and HIF-1 cooperations with epigenetic mechanisms. Molecular and functional processes of the Warburg effect include (a) considerably accelerated glycolytic fluxes; (b) adequate ATP generation per unit time to maintain energy homeostasis; (c) backup and diversion of glycolytic intermediates facilitating the biosynthesis of nucleotides, nonessential amino acids, lipids, and hexosamines; (d) inhibition of pyruvate entry into mitochondria; (e) excessive formation and accumulation of lactate which stimulates tumor growth and suppression of antitumor immunity (in addition, lactate can serve as an energy source for normoxic cancer cells, contributes to extracellular acidosis, and thus drives malignant progression and resistances to conventional therapies); (f) maintenance of the cellular redox homeostasis and low ROS formation; and (g) HIF-1 overexpression, mutant p53, and mutant PTEN which inhibit mitochondrial biogenesis and functions, thus negatively impacting cellular respiration rate. The glycolytic switch is an early event in oncogenesis and primarily supports cell survival. All in all, the Warburg effect, i.e., aerobic glycolysis in the presence of oxygen and - in principle - functioning mitochondria, constitutes a major driver of the cancer progression machinery, resistance to conventional therapies, and - finally - poor patient outcome.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Ciclo do Ácido Cítrico , Glicólise , Humanos , Neoplasias/genética , Microambiente Tumoral
12.
Adv Exp Med Biol ; 1340: 169-186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34569025

RESUMO

Malaria is one of the major parasitic killer diseases worldwide. Severe cases of malaria are mostly in children under the age of 5 years due to their naïve immune system and in pregnant women with weakened immune responses. Inflammatory immune responses against the parasite involve complement activation as well as the antibody and effector cell-mediated immune system. However, after an infection with Plasmodium falciparum (P. falciparum), the most dangerous malaria species, the host-derived immunity is often insufficient to completely inhibit the infection cycles of the parasite in red blood cells for yet unknown reasons. In the present chapter we aim to elucidate the role of the host's and the parasite's heat shock proteins (HSPs) in the development of a novel anti-malaria therapeutic approach.


Assuntos
Malária Falciparum , Malária , Pré-Escolar , Eritrócitos , Feminino , Proteínas de Choque Térmico/genética , Humanos , Imunidade , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Gravidez , Proteínas de Protozoários/genética
13.
Cancer Immunol Immunother ; 69(9): 1823-1832, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32350591

RESUMO

Radiotherapy can elicit abscopal effects in non-irradiated metastases, particularly under immune checkpoint blockade (ICB). We report on two elderly patients with oligometastatic melanoma treated with anti-PD-1 and stereotactic body radiation therapy (SBRT). Before treatment, patient 1 showed strong tumor infiltration with exhausted CD8+ T cells and high expression of T cell-attracting chemokines. This patient rapidly mounted a complete response, now ongoing for more than 4.5 years. Patient 2 exhibited low CD8+ T cell infiltration and high expression of immunosuppressive arginase. After the first SBRT, his non-irradiated metastases did not regress and new metastases occurred although neoepitope-specific and differentiation antigen-specific CD8+ T cells were detected in the blood. A second SBRT after 10 months on anti-PD-1 induced a radiologic complete response correlating with an increase in activated PD-1-expressing CD8 T cells. Apart from a new lung lesion, which was also irradiated, this deep abscopal response lasted for more than 2.5 years. However, thereafter, his disease progressed and the activated PD-1-expressing CD8 T cells dropped. Our data suggest that oligometastatic patients, where a large proportion of the tumor mass can be irradiated, are good candidates to improve ICB responses by RT, even in the case of an unfavorable pretreatment immune signature, after progression on anti-PD-1, and despite advanced age. Besides repeated irradiation, T cell epitope-based immunotherapies (e.g., vaccination) may prolong antitumor responses even in patients with unfavorable pretreatment immune signature.


Assuntos
Melanoma/imunologia , Melanoma/radioterapia , Receptor de Morte Celular Programada 1/imunologia , Idoso , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Feminino , Humanos , Imunoterapia/métodos , Masculino , Melanoma/terapia , Radiocirurgia/métodos
14.
Int J Hyperthermia ; 37(1): 55-65, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31918587

RESUMO

Introduction: An abscopal effect is a clinical observation whereby a local treatment is associated with regression of metastatic cancer at a site distant from the primary location of treatment. Here, we describe the clinical systemic effect induced by regional hyperthermia combined with low-dose chemotherapy and provide immunologic correlates.Case presentation: A 15-year-old patient had been diagnosed with alveolar rhabdomyosarcoma (ARMS). All previous treatment options failed in the patient including haploidentical stem cell transplantation and donor lymphocyte infusion. The patient presented with local and metastatic disease, and upon admission, underwent regional hyperthermia combined with low-dose chemotherapy. Immediately following therapy severe skin reactions were observed. Skin biopsies revealed an intraepithelial lymphocytic infiltration dominated by CD3+/CD8+ T cells with a regular network of dendritic cells. Clinical images compared before and during sequential treatment cycles showed complete metabolic response of the local tumor for more than 10 months of therapy. In addition, metastases completely regressed although they were not direct targets of regional hyperthermia. The systemic effect was associated with enhanced frequency of NK cells and T cells expressing the lectin-like natural-killer group 2 D activating receptor (NKG2D), an increase of the CD56bright subset of NK cells, as well as an increase of effector/memory and effector CD8+ and CD4+ T cells in the blood while the percentage of CD25+FOXP3+ regulatory T cells declined.Conclusions: Regional hyperthermia combined with low-dose chemotherapy had the potential to create a systemic effect which was associated with activation of NK cells and T cells.


Assuntos
Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/radioterapia , Adolescente , Feminino , Humanos , Hipertermia Induzida/métodos
15.
Adv Exp Med Biol ; 1232: 131-143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31893404

RESUMO

Hypoxia, one of the hallmarks of cancer, is caused by an insufficient oxygen supply, mostly due to a chaotic, deficient tumor microcirculation. Apart from a hypoxia-mediated resistance to standard therapies, modulated gene and protein expression, genetic instability and malignant progression, hypoxia also plays a pivotal role in anti-cancer immune responses by (a) reducing survival, cytolytic and migratory activity of effector cells such as CD4+ cells, CD8+ cytotoxic T cells, natural killer-like T cells and natural killer cells, (b) reducing the production and release of effector cytokines, (c) supporting immunosuppressive cells such as regulatory T cells, myeloid-derived suppressor cells and M2 macrophages, (d) increasing the production and release of immunosuppressive cytokines, and (e) inducing the expression of immune checkpoint inhibitors. In this minireview, immunosuppressive effects of hypoxia- and HIF-1a-driven traits in cancers are described.


Assuntos
Hipóxia , Células Supressoras Mieloides , Neoplasias , Humanos , Hipóxia/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/imunologia , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/imunologia
16.
Adv Exp Med Biol ; 1232: 169-176, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31893407

RESUMO

Inhospitable conditions within the tumor microenvironment (TME) are a characteristic feature ('hallmark') of most solid malignancies. Regional tumor hypoxia is a primary deficiency since it plays a key role in malignant progression. Severe hypoxia is often associated with other detrimental conditions in the TME as a consequence of hypoxia-/HIF-1α-induced (with/without oncogene-direction and/or reciprocal interaction of cancer cells with TME cells) metabolic re-programming, exorbitant extracellular adenosine (ADO) generation and VEGF overexpression/VEGF-R activation. Re-programming of the tumor metabolism inter alia includes a 'selfish' upregulation of aerobic glycolysis/glycolytic flux ('Warburg effect'), a strongly enhanced glutaminolysis in tumor cells, ketogenesis in cancer-associated fibroblasts, and an acceleration of the tryptophan uptake/intensified catabolism yielding kynurenine, which can support the malignant phenotype. Aerobic glycolysis and glutaminolysis result in lactate accumulation (up to 40 mM), and together with the enhanced ketogenesis and CO2/carbonic acid production lead to extracellular acidosis (pHe < 6.8). These traits of the TME individually or collectively operate towards cancer progression via e.g. promotion of genetic instability and mutation, resistance to apoptosis, clonal selection, limitless cell survival and sustained proliferation, continuous angiogenesis and tumor growth, local invasion and distant metastasis, anti-tumor immunosuppression and resistance to therapy.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias , Hipóxia Tumoral , Microambiente Tumoral , Linhagem Celular Tumoral , Progressão da Doença , Glicólise , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/fisiopatologia , Fenótipo
17.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076370

RESUMO

As most chemotherapeutic drugs are ineffective in the treatment of chondrosarcoma, we studied the expression pattern and function of SOX9, the master transcription factor for chondrogenesis, in chondrosarcoma, to understand the basic molecular principles needed for engineering new targeted therapies. Our study shows an increase in SOX9 expression in chondrosarcoma compared to normal cartilage, but a decrease when the tumors are finally defined as dedifferentiated chondrosarcoma (DDCS). In DDCS, SOX9 is almost completely absent in the non-chondroid, dedifferentiated compartments. CRISPR/Cas9-mediated knockout of SOX9 in a human chondrosarcoma cell line (HTB94) results in reduced proliferation, clonogenicity and migration, accompanied by an inability to activate MMP13. In contrast, adhesion, apoptosis and polyploidy formation are favored after SOX9 deletion, probably involving BCL2 and survivin. The siRNA-mediated SOX9 knockdown partially confirmed these results, suggesting the need for a certain SOX9 threshold for particular cancer-related events. To increase the efficacy of chondrosarcoma therapies, potential therapeutic approaches were analyzed in SOX9 knockout cells. Here, we found an increased impact of doxorubicin, but a reduced sensitivity for oncolytic virus treatment. Our observations present novel insight into the role of SOX9 in chondrosarcoma biology and could thereby help to overcome the obstacle of drug resistance and limited therapy options.


Assuntos
Condrossarcoma/genética , Poliploidia , Fatores de Transcrição SOX9/genética , Animais , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Chlorocebus aethiops , Condrossarcoma/metabolismo , Condrossarcoma/virologia , Humanos , Metaloproteinase 13 da Matriz/metabolismo , Vírus Oncolíticos/patogenicidade , Fatores de Transcrição SOX9/metabolismo , Células Vero
18.
Small ; 15(13): e1900205, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30828968

RESUMO

Functionalized superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as potential clinical tools for cancer theranostics. Membrane-bound 70 kDa heat shock protein (mHsp70) is ubiquitously expressed on the cell membrane of various tumor types but not normal cells and therefore provides a tumor-specific target. The serine protease granzyme B (GrB) that is produced as an effector molecule by activated T and NK cells has been shown to specifically target mHsp70 on tumor cells. Following binding to Hsp70, GrB is rapidly internalized into tumor cells. Herein, it is demonstrated that GrB functionalized SPIONs act as a contrast enhancement agent for magnetic resonance imaging and induce specific tumor cell apoptosis. Combinatorial regimens employing stereotactic radiotherapy and/or magnetic targeting are found to further enhance the therapeutic efficacy of GrB-SPIONs in different tumor mouse models.


Assuntos
Membrana Celular/metabolismo , Granzimas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/terapia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Terapia Combinada , Dextranos/química , Feminino , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Masculino , Camundongos Endogâmicos C57BL , Camundongos SCID , Neoplasias/diagnóstico por imagem , Ratos Wistar , Nanomedicina Teranóstica
19.
Strahlenther Onkol ; 195(4): 352-361, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30747241

RESUMO

BACKGROUND: Membrane heat shock protein 70 (mHsp70) is indicative of high-risk tumors and serves as a tumor-specific target for natural killer (NK) cells stimulated with Hsp70 peptide (TKD) and Interleukin(IL)-2. Radiochemotherapy (RCT), mHsp70-targeting NK cells, and programmed death(PD)-1 inhibition were combined to improve the efficacy of tumor-specific immune cells in a non-small cell lung carcinoma (NSCLC) patient. PATIENT: Following simultaneous RCT (64.8 Gy), a patient with inoperable NSCLC (cT4, cN3, cM0, stage IIIb) was treated with 4 cycles of autologous ex vivo TKD/IL-2-activated NK cells and the PD-1 antibody nivolumab as a second-line therapy. Blood samples were taken for immunophenotyping during the course of therapy. RESULTS: Adoptive transfer of ex vivo TKD/IL-2-activated NK cells after RCT combined with PD-1 blockade is well tolerated and results in superior overall survival (OS). No viable tumor cells but a massive immune cell infiltration in fibrotic tissue was detected after therapy. Neither tumor progression nor distant metastases were detectable by CT scanning 33 months after diagnosis. Therapy response was associated with significantly increased CD3-/NKG2D+/CD94+ NK cell counts, elevated CD8+ to CD4+ T cell and CD3-/CD56bright to CD3-/CD56dim NK cell ratios, and significantly reduced regulatory T cells (Tregs) in the peripheral blood. CONCLUSION: A combined therapy consisting of RCT, mHsp70-targeting NK cells, and PD-1 antibody inhibition is well tolerated, induces anti-tumor immunity, and results in long-term tumor control in one patient with advanced NSCLC. Further, randomized studies are necessary to confirm the efficacy of this combination therapy.


Assuntos
Transferência Adotiva , Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiorradioterapia/métodos , Células Matadoras Naturais/transplante , Neoplasias Pulmonares/terapia , Nivolumabe/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/patologia , Terapia Combinada , Proteínas de Choque Térmico HSP70/sangue , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X
20.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31652993

RESUMO

Most molecular chaperones belonging to heat shock protein (HSP) families are known to protect cancer cells from pathologic, environmental and pharmacological stress factors and thereby can hamper anti-cancer therapies. In this review, we present data on inhibitors of the heat shock response (particularly mediated by the chaperones HSP90, HSP70, and HSP27) either as a single treatment or in combination with currently available anti-cancer therapeutic approaches. An overview of the current literature reveals that the co-administration of chaperone inhibitors and targeting drugs results in proteotoxic stress and violates the tumor cell physiology. An optimal drug combination should simultaneously target cytoprotective mechanisms and trigger the imbalance of the tumor cell physiology.


Assuntos
Antineoplásicos/química , Chaperonas Moleculares/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Quimioterapia Combinada , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/metabolismo , Humanos , Isoxazóis/química , Isoxazóis/uso terapêutico , Chaperonas Moleculares/metabolismo , Neoplasias/tratamento farmacológico , Oligonucleotídeos/química , Oligonucleotídeos/uso terapêutico , Resorcinóis/química , Resorcinóis/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA