Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 560(7717): 233-237, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069051

RESUMO

Soils harbour some of the most diverse microbiomes on Earth and are essential for both nutrient cycling and carbon storage. To understand soil functioning, it is necessary to model the global distribution patterns and functional gene repertoires of soil microorganisms, as well as the biotic and environmental associations between the diversity and structure of both bacterial and fungal soil communities1-4. Here we show, by leveraging metagenomics and metabarcoding of global topsoil samples (189 sites, 7,560 subsamples), that bacterial, but not fungal, genetic diversity is highest in temperate habitats and that microbial gene composition varies more strongly with environmental variables than with geographic distance. We demonstrate that fungi and bacteria show global niche differentiation that is associated with contrasting diversity responses to precipitation and soil pH. Furthermore, we provide evidence for strong bacterial-fungal antagonism, inferred from antibiotic-resistance genes, in topsoil and ocean habitats, indicating the substantial role of biotic interactions in shaping microbial communities. Our results suggest that both competition and environmental filtering affect the abundance, composition and encoded gene functions of bacterial and fungal communities, indicating that the relative contributions of these microorganisms to global nutrient cycling varies spatially.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Planeta Terra , Fungos/isolamento & purificação , Microbiota/fisiologia , Microbiologia do Solo , Bactérias/genética , Código de Barras de DNA Taxonômico , Resistência Microbiana a Medicamentos/genética , Fungos/genética , Concentração de Íons de Hidrogênio , Metagenômica , Microbiota/genética , Oceanos e Mares , Chuva , Água do Mar/microbiologia
2.
Appl Environ Microbiol ; 89(3): e0173422, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36856441

RESUMO

This manuscript presents the results of an exploratory study on the relationships between NF-κB response through Toll-like receptor (TLR) activation by dust characterized by fungal spore concentrations and species diversity. Personal total dust samples were collected from Norwegian waste sorting plants and then characterized for fungal spores and fungal species diversity, as well as for other bioaerosol components, including endotoxins and actinobacteria. The ability of the dust to induce an NF-κB response by activating TLR2 and TLR4 in vitro was evaluated, as well as the relationship between such responses and quantifiable bioaerosol components. The average concentrations of bioaerosols were 7.23 mg total dust m-3, 4.49 × 105 fungal spores m-3, 814 endotoxin units m-3, and 0.6 × 105 actinobacteria m-3. The mean diversity measurements were 326, 0.59, and 3.39 for fungal richness, evenness, and Shannon index, respectively. Overall, fungal operational taxonomic units (OTUs) belonging to the Ascomycota phylum were most abundant (55%), followed by Basidiomycota (33%) and Mucoromycota (3%). All samples induced significant NF-κB responses through TLR2 and TLR4 activation. While fungal spore levels were positively associated with TLR2 and TLR4 activation, there was a trend that fungal species richness was negatively associated with the activation of these receptors. This observation supports the existence of divergent immunological response relationships between TLR activation and fungal spore levels on one hand and between TLR activation and fungal species diversity on the other. Such relationships seem to be described for the first time for dust from waste facilities. IMPORTANCE This manuscript presents results on multifactorial characterization of bioaerosol exposure in Norwegian waste sorting plants and the potential of such airborne dust to induce NF-κB reactions through TLR2 and TLR4 activations in an in vitro reporter cell model system. Our data revealed that increasing fungal spore levels in the dust is associated with increased activation of TLR2 and TLR4, whereas increasing fungal OTU richness is associated with decreasing activation of these receptors. The NF-κB-induced responses by the collected dust represent, therefore, effective measures of potential key immunological effects induced by a complex mixture of hazardous components, including characterized factors such as endotoxins, fungal spores, bacteria, and many other uncharacterized components. The key immunological events reported here are suggested as holistic alternatives to today's bioaerosol exposure characterization approaches for epidemiological studies in the future.


Assuntos
Actinobacteria , Exposição Ocupacional , Esporos Fúngicos , Exposição Ocupacional/análise , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Poeira , NF-kappa B , Endotoxinas , Bactérias
3.
Glob Chang Biol ; 29(1): 69-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36176231

RESUMO

Climate change is predicted to affect host-parasite interactions, and for some hosts, parasite infection is expected to increase with rising temperatures. Global population declines of important pollinators already have been attributed to climate change and parasitism. However, the role of climate in driving parasite infection and the genetic basis for pollinator hosts to respond often remain obscure. Based on decade-long field data, we investigated the association between climate and Nosema bombi (Microsporidia) infection of buffed-tailed bumblebees (Bombus terrestris), and whether host genotypes play a role. For this, we genotyped 876 wild bumblebee queens and screened for N. bombi infection of those queens between 2000 and 2010. We recorded seven climate parameters during those 11 years and tested for correlations between climate and infection prevalence. Here we show that climatic factors drive N. bombi infection and that the impact of climate depends on mitochondrial DNA cytochrome oxidase I (COI) haplotypes of the host. Infection prevalence was correlated with climatic variables during the time when queens emerge from hibernation. Remarkably, COI haplotypes best predict this association between climatic factors and infection. In particular, two host haplotypes ("A" and "B") displayed phenotypic plasticity in response to climatic variation: Temperature was positively correlated with infection of host haplotype B, but not haplotype A. The likelihood of infection of haplotype A was associated with moisture, conferring greater resistance to parasite infection during wetter years. In contrast, infection of haplotype B was unrelated to moisture. To the best of our knowledge, this is the first study that identifies specific host genotypes that confer differential parasite resistance under variable climatic conditions. Our results underscore the importance of mitochondrial haplotypes to ward off parasites in a changing climate. More broadly, this also suggests that COI may play a pertinent role in climate change adaptations of insect pollinators.


Assuntos
Mudança Climática , Doenças Parasitárias , Abelhas/genética , Animais , Genótipo , Interações Hospedeiro-Parasita/genética
4.
Food Microbiol ; 115: 104326, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567619

RESUMO

Salmonella is known to survive in raw/pasteurized milk and cause foodborne outbreaks. Lactoferrin, present in milk from all animal sources, is an iron-binding glycoprotein that limits the availability of iron to pathogenic bacteria. Despite the presence of lactoferrins, Salmonella can grow in milk obtained from different animal sources. However, the mechanism by which Salmonella overcomes iron scarcity induced by lactoferrin in milk is not evaluated yet. Salmonella employs the DNA binding transcriptional regulator Fur (ferric update regulator) to mediate iron uptake during survival in iron deplete conditions. To understand the importance of Fur in Salmonella milk growth, we profiled the growth of Salmonella Typhimurium Δfur (ST4/74Δfur) in both bovine and camel milk. ST4/74Δfur was highly inhibited in milk compared to wild-type ST4/74, confirming the importance of Fur mediated regulation of iron metabolism in Salmonella milk growth. We further studied the biology of ST4/74Δfur to understand the importance of iron metabolism in Salmonella milk survival. Using increasing concentrations of FeCl3, and the antibiotic streptonigrin we show that iron accumulates in the cytoplasm of ST4/74Δfur. We hypothesized that the accumulated iron could activate oxidative stress via Fenton's reaction leading to growth inhibition. However, the inhibition of ST4/74Δfur in milk was not due to Fenton's reaction, but due to the 'iron scarce' conditions of milk and microaerophilic incubation conditions which made the presence of the fur gene indispensable for Salmonella milk growth. Subsequently, survival studies of 14 other transcriptional mutants of ST4/74 in milk confirmed that RpoE-mediated response to extracytoplasmic stress is also important for the survival of Salmonella in milk. Though we have data only for fur and rpoE, many other Salmonella transcriptional factors could play important roles in the growth of Salmonella in milk, a theme for future research on Salmonella milk biology. Nevertheless, our data provide early insights into the biology of milk-associated Salmonella.


Assuntos
Lactoferrina , Salmonella typhimurium , Animais , Bovinos , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Proteínas Repressoras/genética , Ferro/metabolismo , Leite/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
5.
New Phytol ; 234(6): 2073-2087, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35307841

RESUMO

The replacement of native birch with Norway spruce has been initiated in Norway to increase long-term carbon storage in forests. However, there is limited knowledge on the impacts that aboveground changes will have on the belowground microbiota. We examined which effects a tree species shift from birch to spruce stands has on belowground microbial communities, soil fungal biomass and relationships with vegetation biomass and soil organic carbon (SOC). Replacement of birch with spruce negatively influenced soil bacterial and fungal richness and strongly altered microbial community composition in the forest floor layer, most strikingly for fungi. Tree species-mediated variation in soil properties was a major factor explaining variation in bacterial communities. For fungi, both soil chemistry and understorey vegetation were important community structuring factors, particularly for ectomycorrhizal fungi. The relative abundance of ectomycorrhizal fungi and the ectomycorrhizal : saprotrophic fungal ratio were higher in spruce compared to birch stands, particularly in the deeper mineral soil layers, and vice versa for saprotrophs. The positive relationship between ergosterol (fungal biomass) and SOC stock in the forest floor layer suggests higher carbon sequestration potential in spruce forest soil, alternatively, that the larger carbon stock leads to an increase in soil fungal biomass.


Assuntos
Micorrizas , Picea , Betula/microbiologia , Biota , Carbono , Florestas , Picea/microbiologia , Solo/química , Microbiologia do Solo , Taiga , Árvores
6.
New Phytol ; 234(6): 2032-2043, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34559896

RESUMO

Dead fungal mycelium (necromass) represents a critical component of soil carbon (C) and nutrient cycles. Assessing how the microbial communities associated with decomposing fungal necromass change as global temperatures rise will help in determining how these belowground organic matter inputs contribute to ecosystem responses. In this study, we characterized the structure of bacterial and fungal communities associated with multiple types of decaying mycorrhizal fungal necromass incubated within mesh bags across a 9°C whole ecosystem temperature enhancement in a boreal peatland. We found major taxonomic and functional shifts in the microbial communities present on decaying mycorrhizal fungal necromass in response to warming. These changes were most pronounced in hollow microsites, which showed convergence towards the necromass-associated microbial communities present in unwarmed hummocks. We also observed a high colonization of ericoid mycorrhizal fungal necromass by fungi from the same genera as the necromass. These results indicate that microbial communities associated with mycorrhizal fungal necromass decomposition are likely to change significantly with future climate warming, which may have strong impacts on soil biogeochemical cycles in peatlands. Additionally, the high enrichment of congeneric fungal decomposers on ericoid mycorrhizal necromass may help to explain the increase in ericoid shrub dominance in warming peatlands.


Assuntos
Microbiota , Micobioma , Micorrizas , Ecossistema , Micorrizas/fisiologia , Solo/química , Microbiologia do Solo
7.
World J Microbiol Biotechnol ; 38(11): 207, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36008694

RESUMO

The plant growth-promoting rhizobacteria (PGPRs) improve plant growth and fitness by multiple direct (nitrogen fixation and phosphate solubilization) and indirect (inducing systematic resistance against phytopathogens, soil nutrient stabilization, and maintenance) mechanisms. Nevertheless, the mechanisms by which PGPRs promote plant growth in hot and arid environments remain poorly recorded. In this study, a comparative genome analysis of two phosphate solubilizing bacteria, Pseudomonas atacamensis SM1 and Pseudomonas toyotomiensis SM2, isolated from the rhizosphere of date palm was performed. The abundance of genes conferring stress tolerance (chaperones, heat shock genes, and chemotaxis) and supporting plant growth (plant growth hormone, root colonization, nitrogen fixation, and phosphate solubilization) were compared among the two isolates. This study further evaluated their functions, metabolic pathways, and evolutionary relationship. Results show that both bacterial strains have gene clusters required for plant growth promotion (phosphate solubilization and root colonization), but it is more abundant in P. atacamensis SM1 than in P. toyotomiensis SM2. Genes involved in stress tolerance (mcp, rbs, wsp, and mot), heat shock, and chaperones (hslJ and hslR) were also more common in P. atacamensis SM1. These findings suggest that P. atacamensis SM1could have better adaptability to the hot and arid environment owing to a higher abundance of chaperone genes and heat shock proteins. It may promote plant growth owing to a higher load of root colonization and phosphate solubilization genes and warrants further in vitro study.


Assuntos
Phoeniceae , Rizosfera , Bactérias/metabolismo , Ácidos Indolacéticos/metabolismo , Phoeniceae/metabolismo , Fosfatos/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Pseudomonas/metabolismo , Microbiologia do Solo
8.
Mol Ecol ; 30(19): 4926-4938, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34314543

RESUMO

Climate change is causing upward shift of forest lines worldwide, with consequences for soil biota and carbon (C) sequestration. We here analyse compositional changes in the soil biota across the forest line ecotone, an important transition zone between different ecosystems. We collected soil samples along transects stretching from subalpine mountain birch forests to alpine heath. Soil fungi and micro-eukaryotes were surveyed using DNA metabarcoding of the ITS2 and 18S markers, while ergosterol was used to quantify fungal biomass. We observed a strong shift in the soil biota across the forest line ecotone: Below the forest line, there were higher proportions of basidiomycetes and mucoromycetes, including ectomycorrhizal and saprotrophic fungi. Above it, we observed relatively more root-associated ascomycetes, including Archaeorhizomycetes, ericoid mycorrhizal fungi and dark septate endophytes. Ergosterol and percentage C content in soil correlated strongly and positively with the abundance of root-associated ascomycetes. The predominance of ectomycorrhizal and saprotrophic fungi below the forest line probably promote high C turnover, while root-associated ascomycetes above the forest line may enhance C sequestration. With further rise in forest lines, there will be a corresponding shift in the below-ground biota, probably leading to enhanced release of soil C.


Assuntos
Micobioma , Micorrizas , Ecossistema , Florestas , Fungos/genética , Micobioma/genética , Micorrizas/genética , Solo , Microbiologia do Solo
9.
Appl Environ Microbiol ; 85(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31420347

RESUMO

Exposure to fungal spores has been associated with respiratory symptoms and allergic alveolitis among sawmill workers, but the complexity of sawmill workers' fungal exposure has been poorly studied. We characterized the fungal diversity in air samples from sawmill workers' breathing zones and identified differences in the richness, diversity, and taxonomic composition between companies, departments, wood types, and seasons. Full-shift personal inhalable dust samples (n = 86) collected from 11 industrial sawmill, sorting mill, and planer mill companies processing spruce and/or pine were subjected to DNA metabarcoding using the fungal internal transcribed spacer (ITS) region 2. The workers were exposed to a higher total number of operational taxonomic units (OTUs) in summer than in winter and when processing spruce than when processing pine. Workers in the saw department had the richest fungal exposure, followed by workers in the planing department and sorting of dry timber department. Sawmills explained 11% of the variation in the fungal community composition of the exposure, followed by season (5%) and department (3%). The fungal compositions of the exposures also differed between seasons, sawmills, wood types, and departments at the taxonomic level, ranging from the phylum to the species level. The differences in exposure diversity suggest that the potential health effects of fungal inhalation may also be different; hence, a risk assessment based on the fungal diversity differences should be performed. This study may serve as a basis for establishing a fungal profile of signature species that are specific for sawmills and that can be measured quantitatively in future risk assessments of sawmill workers.IMPORTANCE To gain more knowledge about exposure-response relationships, it is important to improve exposure characterization by comprehensively identifying the temporal and spatial fungal composition and diversity of inhalable dust at workplaces. The variation in the diverse fungal communities to which individuals are exposed in different seasons and sawmills suggests that variations in exposure-related health effects between seasons and companies can be expected. More importantly, the distinct fungal profiles between departments across companies indicate that workers in different job groups are differently exposed and that health risks can be department specific. DNA metabarcoding provides insight into a broad spectrum of airborne fungi that may serve as a basis for obtaining important knowledge about the fungi to which workers are exposed.


Assuntos
Biodiversidade , Exposição por Inalação , Micobioma , Exposição Ocupacional , Madeira , Ar , Microbiologia do Ar , Poeira , Monitoramento Ambiental , Fungos/classificação , Humanos , Análise Multivariada , Filogenia , Esporos Fúngicos
10.
Mycorrhiza ; 27(5): 513-524, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28349216

RESUMO

Climate change may alter mycorrhizal communities, which impact ecosystem characteristics such as carbon sequestration processes. These impacts occur at a greater magnitude in Arctic ecosystems, where the climate is warming faster than in lower latitudes. Cassiope tetragona (L.) D. Don is an Arctic plant species in the Ericaceae family with a circumpolar range. C. tetragona has been reported to form ericoid mycorrhizal (ErM) as well as ectomycorrhizal (ECM) symbioses. In this study, the fungal taxa present within roots of C. tetragona plants collected from Svalbard were investigated using DNA metabarcoding. In light of ongoing climate change in the Arctic, the effects of artificial warming by open-top chambers (OTCs) on the fungal root community of C. tetragona were evaluated. We detected only a weak effect of warming by OTCs on the root-associated fungal communities that was masked by the spatial variation between sampling sites. The root fungal community of C. tetragona was dominated by fungal groups in the Basidiomycota traditionally classified as either saprotrophic or ECM symbionts, including the orders Sebacinales and Agaricales and the genera Clavaria, Cortinarius, and Mycena. Only a minor proportion of the operational taxonomic units (OTUs) could be annotated as ErM-forming fungi. This indicates that C. tetragona may be forming mycorrhizal symbioses with typically ECM-forming fungi, although no characteristic ECM root tips were observed. Previous studies have indicated that some saprophytic fungi may also be involved in biotrophic associations, but whether the saprotrophic fungi in the roots of C. tetragona are involved in biotrophic associations remains unclear. The need for more experimental and microscopy-based studies to reveal the nature of the fungal associations in C. tetragona roots is emphasized.


Assuntos
Ericaceae/microbiologia , Micorrizas/classificação , Raízes de Plantas/microbiologia , Temperatura , Regiões Árticas , Mudança Climática , Código de Barras de DNA Taxonômico , DNA Fúngico/genética
11.
Mycorrhiza ; 26(8): 809-818, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27325524

RESUMO

Bistorta vivipara is a widespread arctic-alpine ectomycorrhizal (ECM) plant species. Recent findings suggest that fungal communities associated with B. vivipara roots appear random over short distances, but at larger scales, environmental filtering structure fungal communities. Habitats in highly stressful environments where specialist species with narrower niches may have an advantage represent unique opportunity to test the effect of environmental filtering. We utilised high-throughput amplicon sequencing to identify ECM communities associated with B. vivipara in Svalbard. We compared ECM communities in a core habitat where B. vivipara is frequent (Dryas-heath) with edge habitats representing extremes in terms of nutrient availability where B. vivipara is less frequent (bird-manured meadow and a nutrient-depleted mine tilling). Our analysis revealed that soil conditions in edge habitats favour less diverse but more distinct ECM fungal communities with functional traits adapted to local conditions. ECM richness was overall lower in both edge habitats, and the taxonomic compositions of ECM fungi were in line with our functional expectations. Stress-tolerant genera such as Laccaria and Hebeloma were abundant in nutrient-poor mine site whereas functional competitors genera such as Lactarius and Russula were dominant in the nutrient-rich bird-cliff site. Our results suggest that ECM communities in rare edge habitats are most likely not subsets of the larger pool of ECM fungi found in natural tundra, and they may represent a significant contribution to the overall diversity of ECM fungi in the Arctic.


Assuntos
DNA Fúngico/genética , Ecossistema , Micorrizas/genética , Polygonum/microbiologia , Microbiologia do Solo , DNA Fúngico/classificação , DNA Fúngico/isolamento & purificação , Micorrizas/classificação , Micorrizas/isolamento & purificação , Raízes de Plantas/microbiologia , Svalbard
12.
New Phytol ; 205(4): 1587-1597, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25483568

RESUMO

Soil conditions and microclimate are important determinants of the fine-scale distribution of plant species in the Arctic, creating locally heterogeneous vegetation. We hypothesize that root-associated fungal (RAF) communities respond to the same fine-scale environmental gradients as the aboveground vegetation, creating a coherent pattern between aboveground vegetation and RAF. We explored how RAF communities of the ectomycorrhizal (ECM) plant Bistorta vivipara and aboveground vegetation structure of arctic plants were affected by biotic and abiotic variables at 0.3-3.0-m scales. RAF communities were determined using pyrosequencing. Composition and spatial structure of RAF and aboveground vegetation in relation to collected biotic and abiotic variables were analysed by ordination and semi-variance analyses. The vegetation was spatially structured along soil C and N gradients, whereas RAF lacked significant spatial structure. A weak relationship between RAF community composition and the cover of two ECM plants, B. vivipara and S. polaris, was found, and RAF richness increased with host root length and root weight. Results suggest that the fine-scale spatial structure of RAF communities of B. vivipara and the aboveground vegetation are driven by different factors. At fine spatial scales, neighbouring ECM plants may affect RAF community composition, whereas soil nutrients gradients structure the vegetation.


Assuntos
Fungos/fisiologia , Raízes de Plantas/microbiologia , Polygonaceae/microbiologia , Solo , Regiões Árticas , Biodiversidade , Fungos/classificação , Modelos Lineares , Dados de Sequência Molecular , Análise de Sequência de DNA
13.
Mol Ecol ; 24(24): 6289-302, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-26547806

RESUMO

Ectomycorrhizal (ECM) fungi are important for efficient nutrient uptake of several widespread arctic plant species. Knowledge of temporal variation of ECM fungi, and the relationship of these patterns to environmental variables, is essential to understand energy and nutrient cycling in Arctic ecosystems. We sampled roots of Bistorta vivipara ten times over two years; three times during the growing-season (June, July and September) and twice during winter (November and April) of both years. We found 668 ECM OTUs belonging to 25 different ECM lineages, whereof 157 OTUs persisted throughout all sampling time-points. Overall, ECM fungal richness peaked in winter and species belonging to Cortinarius, Serendipita and Sebacina were more frequent in winter than during summer. Structure of ECM fungal communities was primarily affected by spatial factors. However, after accounting for spatial effects, significant seasonal variation was evident revealing correspondence with seasonal changes in environmental conditions. We demonstrate that arctic ECM richness and community structure differ between summer (growing-season) and winter, possibly due to reduced activity of the core community, and addition of fungi adapted for winter conditions forming a winter-active fungal community. Significant month × year interactions were observed both for fungal richness and community composition, indicating unpredictable between-year variation. Our study indicates that addressing seasonal changes requires replication over several years.


Assuntos
Biodiversidade , Micorrizas/classificação , Polygonaceae/microbiologia , Estações do Ano , Microbiologia do Solo , Regiões Árticas , DNA Fúngico , Sequenciamento de Nucleotídeos em Larga Escala , Micorrizas/genética , Raízes de Plantas/microbiologia , Análise de Sequência de DNA
14.
Front Plant Sci ; 15: 1356545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550289

RESUMO

The search for ecofriendly products to reduce crop dependence on synthetic chemical fertilizers presents a new challenge. The present study aims to isolate and select efficient native PGPB that can reduce reliance on synthetic NPK fertilizers. A total of 41 bacteria were isolated from the sediment and roots of mangrove trees (Avicennia marina) and assessed for their PGP traits under in vitro conditions. Of them, only two compatible strains of Bacillus species were selected to be used individually and in a mix to promote tomato seedling growth. The efficiency of three inoculants applied to the soil was assessed in a pot experiment at varying rates of synthetic NPK fertilization (0, 50, and 100% NPK). The experiment was set up in a completely randomized design with three replications. Results showed that the different inoculants significantly increased almost all the studied parameters. However, their effectiveness is strongly linked to the applied rate of synthetic fertilization. Applying bacterial inoculant with only 50% NPK significantly increased the plant height (44-51%), digital biomass (60-86%), leaf area (77-87%), greenness average (29-36%), normalized difference vegetation index (29%), shoot dry weight (82-92%) and root dry weight (160-205%) compared to control plants. Concerning the photosynthetic activity, this treatment showed a positive impact on the concentrations of chlorophyll a (25-31%), chlorophyll b (34-39%), and carotenoid (45-49%). Interestingly, these increases ensured the highest values significantly similar to or higher than those of control plants given 100% NPK. Furthermore, the highest accumulation of N, P, K, Cu, Fe, Zn, and Ca in tomato shoots was recorded in plants inoculated with the bacterial mix at 50% NPK. It was proven for the first time that the native PGP bacteria derived from mangrove plant species A. marina positively affects the quality of tomato seedlings while reducing 50% NPK.

15.
Antibiotics (Basel) ; 12(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36671246

RESUMO

The emergence of COVID-19 infection led to the indiscriminate use of antimicrobials without knowing their efficacy in treating the disease. The gratuitous use of antibiotics for COVID-19 treatment raises concerns about the emergence of antimicrobial resistance (AMR). In this systematic review, we performed a thorough systematic search using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines of scientific databases (Scopus, Web of Science, and PubMed) to identify studies where antibiotics were prescribed to treat COVID-19 (December 2019 to December 2021). Of 970 identified studies, 130 were included in our analyses. Almost 78% of COVID-19 patients have been prescribed an antibiotic. Cephalosporins were the most prescribed (30.1% of patients) antibiotics, followed by azithromycin (26% of patients). Antibiotics were prescribed for COVID-19 patients regardless of reported severity; the overall rate of antibiotic use was similar when comparing patients with a severe or critical illness (77.4%) and patients with mild or moderate illness (76.8%). Secondary infections were mentioned in only 11 studies. We conclude that concerns related to COVID-19 and the lack of treatment strategy led to the overuse of antibiotics without proper clinical rationale. Based on our findings, we propose that antimicrobial stewardship should be retained as a priority while treating viral pandemics.

16.
Front Plant Sci ; 13: 944637, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991423

RESUMO

The irrigation of date palms (Phoenix dactylifera) with saline groundwater is routinely practiced in the agroecosystems of arid environments because of freshwater scarcity. This leads to salts deposition in topsoil layers and increases soil salinization. However, how different irrigation sources affect soil microbiota is poorly understood. Bulk soil samples were collected from date farms receiving non-saline water and saline groundwater to examine bacterial communities using metabarcoding. Overall, bacterial diversity measures (Shannon diversity index, richness, and evenness) did not vary between irrigation sources. Bacterial communities were structured based on irrigation water sources and were significantly associated with their electrical conductivity. Of 5,155 operational taxonomic units (OTUs), 21.3% were unique to soil irrigated with saline groundwater, 31.5% received non-saline water irrigation, and 47.2% were shared. The Proteobacteria abundance was higher in soil under saline groundwater irrigation while Actinobacteriota abundance was lower. A compositional shift at the genera level was also evident; the abundance of Subgroup_10 and Mycobacterium was higher under saline groundwater irrigation. Mycobacterium was a key indicator of OTU under saline groundwater irrigation while Solirubrobacter was an indicator of non-saline water irrigation. Functional gene analyses showed enrichment of fatty acid, cell wall, and starch biosynthesis pathways in soil under saline groundwater irrigation. These findings provide insights into how "salinity filtering" influences bacterial communities, key taxa, and the potential metabolic function in soil under increasing irrigation water salinities, and have broad implications for arid agroecosystems.

17.
Sci Rep ; 12(1): 12733, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882908

RESUMO

Saline water irrigation has been used in date palm (Phoenix dactylifera L.) agriculture as an alternative to non-saline water due to water scarcity in hyper-arid environments. However, the knowledge pertaining to saline water irrigation impact on the root-associated bacterial communities of arid agroecosystems is scarce. In this study, we investigated the effect of irrigation sources (non-saline freshwater vs saline groundwater) on date palm root-associated bacterial communities using 16S rDNA metabarcoding. The bacterial richness, Shannon diversity and evenness didn't differ significantly between the irrigation sources. Soil electrical conductivity (EC) and irrigation water pH were negatively related to Shannon diversity and evenness respectively, while soil organic matter displayed a positive correlation with Shannon diversity. 40.5% of total Operational Taxonomic Units were unique to non-saline freshwater irrigation, while 26% were unique to saline groundwater irrigation. The multivariate analyses displayed strong structuring of bacterial communities according to irrigation sources, and both soil EC and irrigation water pH were the major factors affecting bacterial communities. The genera Bacillus, Micromonospora and Mycobacterium were dominated while saline water irrigation whereas contrasting pattern was observed for Rhizobium, Streptomyces and Acidibacter. Taken together, we suggest that date-palm roots select specific bacterial taxa under saline groundwater irrigation, which possibly help in alleviating salinity stress and promote growth of the host plant.


Assuntos
Phoeniceae , Salinidade , Irrigação Agrícola , Bactérias/genética , Phoeniceae/microbiologia , Águas Salinas , Solo
18.
Sci Rep ; 12(1): 11293, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35788147

RESUMO

Sabkhas are hypersaline, mineral-rich, supratidal mudflats that harbor microbes that are adapted to high salt concentration. Sabkha microbial diversity is generally studied for their community composition, but less is known about their genetic structure and heterogeneity. In this study, we analyzed a coastal sabkha for its microbial composition using 16S rDNA and whole metagenome, as well as for its population genetic structure. Our 16S rDNA analysis show high alpha diversity in both inner and edge sabkha than outer sabkha. Beta diversity result showed similar kind of microbial composition between inner and edge sabkha, while outer sabkha samples show different microbial composition. At phylum level, Bacteroidetes (~ 22 to 34%), Euryarchaeota (~ 18 to ~ 30%), unclassified bacteria (~ 24 to ~ 35%), Actinobacteria (~ 0.01 to ~ 11%) and Cyanobacteria (less than 1%) are predominantly found in both inside and edge sabkha regions, whereas Proteobacteria (~ 92 to ~ 97%) and Parcubacteria (~ 1 to ~ 2%) are predominately found in outer sabkha. Our 225 metagenomes assembly from this study showed similar bacterial community profile as observed in 16S rDNA-based analysis. From the assembled genomes, we found important genes that are involved in biogeochemical cycles and secondary metabolite biosynthesis. We observed a dynamic, thriving ecosystem that engages in metabolic activity that shapes biogeochemical structure via carbon fixation, nitrogen, and sulfur cycling. Our results show varying degrees of horizontal gene transfers (HGT) and homologous recombination, which correlates with the observed high diversity for these populations. Moreover, our pairwise population differentiation (Fst) for the abundance of species across the salinity gradient of sabkhas identified genes with strong allelic differentiation, lower diversity and elevated nonsynonymous to synonymous ratio of variants, which suggest selective sweeps for those gene variants. We conclude that the process of HGT, combined with recombination and gene specific selection, constitute the driver of genetic variation in bacterial population along a salinity gradient in the unique sabkha ecosystem.


Assuntos
Cianobactérias , Salinidade , Bacteroidetes/genética , Cianobactérias/genética , DNA Ribossômico , Ecossistema , Cloreto de Sódio , Cloreto de Sódio na Dieta
19.
FEMS Microbiol Ecol ; 97(7)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34057174

RESUMO

Plantations of Norway spruce have been established well beyond its natural range in many parts of the world, potentially impacting native microbial ecosystems and the processes they mediate. In this study, we investigate how the establishment of spruce plantations in a landscape dominated by native birch forests in western Norway impacts soil properties and belowground fungal communities. Soil cores were collected from neighboring stands of planted spruce and native birch forests. We used DNA metabarcoding of the rDNA internal transcribed spacer 2 region and ergosterol measurements to survey the fungal community composition and its biomass, respectively. In the two investigated soil layers (litter and humus), fungal community composition, diversity and biomass were strongly affected by the tree species shift. Native birch stands hosted markedly richer fungal communities, including numerous fungi not present in planted spruce stands. In contrast, the spruce stands included higher relative abundance of ectomycorrhizal fungi as well as higher fungal biomass. Hence, establishing plantations of Norway spruce in native birch forests leads to significant losses in diversity, but increase in biomass of ectomycorrhizal fungi, which could potentially impact carbon sequestration processes and ecosystem functioning.


Assuntos
Betula , Solo , Ecossistema , Florestas , Fungos/genética , Noruega , Microbiologia do Solo , Árvores
20.
FEMS Microbiol Ecol ; 97(3)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33547899

RESUMO

Soil depth represents a strong physiochemical gradient that greatly affects soil-dwelling microorganisms. Fungal communities are typically structured by soil depth, but how other microorganisms are structured is less known. Here, we tested whether depth-dependent variation in soil chemistry affects the distribution and co-occurrence patterns of soil microbial communities. This was investigated by DNA metabarcoding in conjunction with network analyses of bacteria, fungi, as well as other micro-eukaryotes, sampled in four different soil depths in Norwegian birch forests. Strong compositional turnover in microbial assemblages with soil depth was detected for all organismal groups. Significantly greater microbial diversity and fungal biomass appeared in the nutrient-rich organic layer, with sharp decrease towards the less nutrient-rich mineral zones. The proportions of copiotrophic bacteria, Arthropoda and Apicomplexa were markedly higher in the organic layer, while patterns were opposite for oligotrophic bacteria, Cercozoa, Ascomycota and ectomycorrhizal fungi. Network analyses indicated more intensive inter-kingdom co-occurrence patterns in the upper mineral layer (0-5 cm) compared to the above organic and the lower mineral soil, signifying substantial influence of soil depth on biotic interactions. This study supports the view that different microbial groups are adapted to different forest soil strata, with varying level of interactions along the depth gradient.


Assuntos
Micobioma , Solo , Florestas , Fungos/genética , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA