Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Pestic Biochem Physiol ; 157: 1-12, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31153457

RESUMO

The use of neurotoxic chemical insecticides has led to consequences against the environment, insect resistances and side-effects on non-target organisms. In this context, we developed a novel strategy to optimize insecticide efficacy while reducing doses. It is based on nanoencapsulation of a pyrethroid insecticide, deltamethrin, used as synergistic agent, combined with a non-encapsulated oxadiazine (indoxacarb). In this case, the synergistic agent is used to increase insecticide efficacy by activation of calcium-dependant intracellular signaling pathways involved in the regulation of the membrane target of insecticides. In contrast to permethrin (pyrethroid type I), we report that deltamethrin (pyrethroid type II) produces an increase in intracellular calcium concentration in insect neurons through the reverse Na/Ca exchanger. The resulting intracellular calcium rise rendered voltage-gated sodium channels more sensitive to lower concentration of the indoxacarb metabolite DCJW. Based on these findings, in vivo studies were performed on the cockroach Periplaneta americana and mortality rates were measured at 24 h, 48 h and 72 h after treatments. Comparative studies of the toxicity between indoxacarb alone and indoxacarb combined with deltamethrin or nanoencapsulated deltamethrin (LNC-deltamethrin), indicated that LNC-deltamethrin potentiated the effect of indoxacarb. We also demonstrated that nanoencapsulation protected deltamethrin from esterase-induced enzymatic degradation and led to optimize indoxacarb efficacy while reducing doses. Moreover, our results clearly showed the benefit of using LNC-deltamethrin rather than piperonyl butoxide and deltamethrin in combination commonly used in formulation. This innovative strategy offers promise for increasing insecticide efficacy while reducing both doses and side effects on non-target organisms.


Assuntos
Cálcio/metabolismo , Inseticidas/química , Inseticidas/farmacologia , Nanocápsulas/química , Nitrilas/química , Nitrilas/farmacologia , Oxazinas/química , Oxazinas/farmacologia , Piretrinas/química , Piretrinas/farmacologia , Animais , Células Cultivadas , Baratas , Masculino , Estrutura Molecular , Periplaneta/efeitos dos fármacos , Trocador de Sódio e Cálcio/metabolismo
2.
Mar Environ Res ; 183: 105843, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36512864

RESUMO

Siltation is a major concern in dynamic and complex ecosystems, such as ports. The mud must be regularly dredged to avoid disturbing the navigation channels. Sediments are carried by the waters entering the port and are partially trapped by harbour structures. Numerous studies have been conducted on the physical factors influencing siltation in port areas, whereas, few have focused on the role of biotic factors in mud formation. However, research in other contexts has shown that organisms that are abundant in pontoons, such as bivalves and tunicates, play an important role in this siltation process. All of these organisms belong to the filter feeder group. The sediments sucked in by the filter feeders are excreted in the form of faeces or mucus-bound pseudo-faeces. These waste materials, called bioproducts, settle efficiently and are involved in the composition of the mud. This study aimed to highlight the role of filter feeders in the siltation process in port areas and to determine the factors that influence the production of bioproducts by filter feeders. To investigate the role of filter feeders in the siltation processes, an experimental analysis was conducted in the largest marina in Europe (La Rochelle, France). It is divided into four basins with distinct filter feeder communities and environmental conditions, allowing for a detailed study of the environmental factors that influence the production of bioproducts. This analysis consisted of recovering and studying the bioproducts generated by the filter feeders using sediment traps fixed under pontoons. To explore the evolution of this biological production, 16 campaigns were conducted from January to March 2020 and May to July 2020. The total amount of dry matter produced was constant between seasons at approximately 130 g/m2/d; marina-wide, this amount represents a total daily production of 3.2 tons. However, the production amount varies spatially and temporally in relation to marine hydrodynamics and the organisms involved. Bioproduction was taxon-dependent: areas abundant in oysters and mussels were the areas with the most pronounced bioproduction, whereas there was no significant relationship between bioproduction and the presence of tunicates or scallops. If we consider bioproduction on a seasonal scale, we can see that the campaigns with the greatest production correspond to the periods when the sediment supply was the highest, i.e. when the tidal range was the highest. The quality of the bioproducts (organic matter content) differed between seasons, which can be explained by both environmental and metabolic changes. Understanding the role of filter feeders in siltation processes appears to be essential in port environments that need to be regularly dredged to ensure safe navigation.


Assuntos
Bivalves , Ecossistema , Animais , França , Europa (Continente)
3.
Metabolites ; 11(12)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34940620

RESUMO

Ports are a good example of how coastal environments, gathering a set of diverse ecosystems, are subjected to pollution factors coming from human activities both on land and at sea. Among them, trace element as copper represents a major factor. Abundant in port ecosystem, copper is transported by runoff water and results from diverse port features (corrosion of structures, fuel, anti-fouling products, etc.). The variegated scallop Mimachlamys varia is common in the Atlantic port areas and is likely to be directly influenced by copper pollution, due to its sessile and filtering lifestyle. Thus, the aim of the present study is to investigate the disruption of the variegated scallop metabolism, under a short exposure (48 h) to a copper concentration frequently encountered in the waters of the largest marina in Europe (82 µg/L). For this, we chose a non-targeted metabolomic approach using ultra-high performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS), offering a high level of sensitivity and allowing the study without a priori of the entire metabolome. We described 28 metabolites clearly modulated by copper. They reflected the action of copper on several biological functions such as osmoregulation, oxidative stress, reproduction and energy metabolism.

4.
PLoS One ; 12(1): e0170110, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28125605

RESUMO

Coastal ecosystems, which provide numerous essential ecological functions for fish, are threatened by the proliferation of green macroalgae that significantly modify habitat conditions in intertidal areas. Understanding the influence of green tides on the nursery function of these ecosystems is essential to determine their potential effects on fish recruitment success. In this study, the influence of green tides on juvenile fish was examined in an intertidal sandy beach area, the Bay of Saint-Brieuc (Northwestern France), during two annual cycles of green tides with varying levels of intensity. The responses of three nursery-dependent fish species, the pelagic Sprattus sprattus (L.), the demersal Dicentrarchus labrax (L.) and the benthic Pleuronectes platessa L., were analysed to determine the effects of green tides according to species-specific habitat niche and behaviour. The responses to this perturbation were investigated based on habitat selection and a comparison of individual performance between a control and an impacted site. Several indices on different integrative scales were examined to evaluate these responses (antioxidant defence capacity, muscle total lipid, morphometric condition and growth). Based on these analyses, green tides affect juvenile fish differently according to macroalgal density and species-specific tolerance, which is linked to their capacity to move and to their distribution in the water column. A decreasing gradient of sensitivity was observed from benthic to demersal and pelagic fish species. At low densities of green macroalgae, the three species stayed at the impacted site and the growth of plaice was reduced. At medium macroalgal densities, plaice disappeared from the impacted site and the growth of sea bass and the muscle total lipid content of sprat were reduced. Finally, when high macroalgal densities were reached, none of the studied species were captured at the impacted site. Hence, sites affected by green tides are less favourable nursery grounds for all the studied species, with species-specific effects related to macroalgal density.


Assuntos
Ecossistema , Peixes/crescimento & desenvolvimento , Proliferação Nociva de Algas , Animais , Biodiversidade , Ecologia , França , Dinâmica Populacional , Alga Marinha/crescimento & desenvolvimento , Especificidade da Espécie
5.
Peptides ; 27(12): 3331-40, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17097762

RESUMO

Hemorphins are multifunctional peptides derived from hemoglobin or blood processing. They have been found at high levels within the central nervous system where they have a direct effect on neuronal cells via peptidergic receptors. As relatively few studies have examined their metabolic stability in the brain, such investigation was performed to locate the cellular distribution of enzymatic activity against these peptides. High-performance liquid chromatography (HPLC) combined with electrospray ionisation mass spectrometry (ESI-MS) allows identification of degradation products resulting from incubation of hemorphin-7 peptides (LVV-hemorphin-7, VV-hemorphin-7 and hemorphin-7) with subcellular fractions isolated from rat brain tissue. Metabolic activities were found against the three peptides in brain homogenate and subcellular fractions with the highest metabolic activity (<3% peptide remaining after 10 min) observed in the microsomal fraction which processed hemorphin-7 peptides mainly into N-terminal fragments (giving LVVH5) suggesting action of brain-membrane enzymes with C-terminal specificity. Incubation of the ACE inhibitor captopril (0.2 microM) with microsomal fraction, together with LVVH7, decreased the processing of LVVH7 to form LVVH5 by 85%.


Assuntos
Encéfalo/metabolismo , Hemoglobinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , Masculino , Ratos , Ratos Wistar , Frações Subcelulares/metabolismo
6.
PLoS One ; 11(3): e0150184, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26938082

RESUMO

Understanding the effects of chronic chemical contamination on natural populations of marine organisms is complex due to the combined effects of different types of pollutants and environmental parameters that can modulate the physiological responses to stress. Here, we present the effects of a chronic contamination in a marine bivalve by combining multiple approaches that provide information on individual and population health. We sampled variegated scallops (Mimachlamys varia) at sites characterized by different contaminants and contamination levels to study the short and long-term (intergenerational) responses of this species to physiological stress. We used biomarkers (SOD, MDA, GST, laccase, citrate synthase and phosphatases) as indicators of oxidative stress, immune system alteration, mitochondrial respiration and general metabolism, and measured population genetic diversity at each site. In parallel, concentration of 14 trace metals and 45 organic contaminants (PAHs, PCBs, pesticides) in tissues were measured. Scallops were collected outside and during their reproductive season to investigate temporal variability in contaminant and biomarker levels. Our analyses revealed that the levels of two biomarkers (Laccase-type phenoloxidase and malondialdehyde) were significantly correlated with Cd concentration. Additionally, we observed significant seasonal differences for four of the five biomarkers, which is likely due to the scallop reproductive status at time of sampling. As a source of concern, a location that was identified as a reference site on the basis of inorganic contaminant levels presented the same level of some persistent organic pollutants (DDT and its metabolites) than more impacted sites. Finally, potential long-term effects of heavy metal contamination were observed for variegated scallops as genetic diversity was depressed in the most polluted sites.


Assuntos
Metais Pesados/farmacologia , Pectinidae/efeitos dos fármacos , Praguicidas/farmacologia , Bifenilos Policlorados/farmacologia , Hidrocarbonetos Policíclicos Aromáticos/farmacologia , Poluentes Químicos da Água/farmacologia , Animais , Citrato (si)-Sintase , Trato Gastrointestinal/metabolismo , Variação Genética , Glutationa Transferase/metabolismo , Malondialdeído/metabolismo , Metais Pesados/metabolismo , Pectinidae/genética , Pectinidae/metabolismo , Praguicidas/metabolismo , Bifenilos Policlorados/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Estresse Fisiológico , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/metabolismo
7.
Insect Biochem Mol Biol ; 66: 136-44, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26524962

RESUMO

In Drosophila melanogaster, the functions of voltage-gated sodium (Nav) channels are modulated by TipE and its orthologs. Here, we describe a novel TipE homolog of the American cockroach, Periplaneta americana, called PaTipE. Like DmTipE, PaTipE mRNAs are ubiquitously expressed. Surprisingly, PaTipE mRNA was undetectable in neurosecretory cells identified as dorsal unpaired median neurons. Phylogenetic analysis placed this new sequence in TipE clade, indicating an independent evolution from a common ancestor. Contrary to previous reports, our data indicate that the auxiliary subunits of insect Nav channels are very distant from the mammalian BKCa auxiliary subunits. To decipher the functional roles of PaTipE, we characterized the gating properties of DmNav1-1 channels co-expressed with DmTipE or PaTipE, in Xenopus oocytes. Compared to DmTipE, PaTipE increased Na(+) currents by a 4.2-fold. The voltage-dependence of steady-state fast inactivation of DmNav1-1/PaTipE channels was shifted by 5.8 mV to more negative potentials than that of DmNav1-1/DmTipE channels. DmNav1-1/PaTipE channels recovered 3.2-fold slower from the fast-inactivated state than DmNav1-1/DmTipE channels. In conclusion, this study supports that the insect Nav auxiliary subunits share functional features with their mammalian counterparts, although structurally and phylogenetically distant.


Assuntos
Proteínas de Insetos/metabolismo , Proteínas de Membrana/metabolismo , Periplaneta/metabolismo , Canais de Sódio/metabolismo , Animais , Fenômenos Eletrofisiológicos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Ativação do Canal Iônico , Potenciais da Membrana , Proteínas de Membrana/química , Oócitos , Periplaneta/química , Periplaneta/genética , Filogenia , Canais de Sódio/química , Canais de Sódio/genética , Xenopus
8.
J Mol Endocrinol ; 50(1): 91-102, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23197360

RESUMO

Octopamine (OA) is an important neuroactive substance that modulates several physiological functions and behaviors of various invertebrate species. This biogenic monoamine, structurally related to noradrenaline, acts as a neurotransmitter, a neuromodulator, or a neurohormone in insects. The tyramine ß-hydroxylase (TBH) catalyzes the last step in OA biosynthesis and thus plays a key role in the regulation of synthesis and secretion of OA in neurons. The aim of this study was to characterize TBH in the cockroach Periplaneta americana and to get a better understanding of its regulation under stress conditions in this insect. First of all, five full-length cDNAs encoding TBH isoforms were cloned from the nerve cord of the physiological model P. americana. PaTBH transcripts were found mainly expressed in nervous tissues and in octopaminergic dorsal unpaired median neurons. In addition, a new ELISA assay was developed so as to allow determination of both OA level and TBH activity in stressed cockroaches. Mechanical stressful stimulation led to a significant increase in TBH activity after 1 and 24  h, with a higher induction after 1  h than after 24  h. Thus, TBH could be considered as a promising biomarker of stress in insects rather than OA.


Assuntos
Baratas/fisiologia , Oxigenases de Função Mista/metabolismo , Estresse Fisiológico , Regulação para Cima , Sequência de Aminoácidos , Animais , Sequência de Bases , Biocatálise , Clonagem Molecular , Primers do DNA , DNA Complementar , Ensaio de Imunoadsorção Enzimática , Oxigenases de Função Mista/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
9.
PLoS One ; 8(8): e67290, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23967047

RESUMO

Insect voltage-gated sodium (Nav) channels are formed by a well-known pore-forming α-subunit encoded by para-like gene and ancillary subunits related to TipE from the mutation "temperature-induced-paralysis locus E." The role of these ancillary subunits in the modulation of biophysical and pharmacological properties of Na(+) currents are not enough documented. The unique neuronal ancillary subunit TipE-homologous protein 1 of Drosophila melanogaster (DmTEH1) strongly enhances the expression of insect Nav channels when heterologously expressed in Xenopus oocytes. Here we report the cloning and functional expression of two neuronal DmTEH1-homologs of the cockroach, Periplaneta americana, PaTEH1A and PaTEH1B, encoded by a single bicistronic gene. In PaTEH1B, the second exon encoding the last 11-amino-acid residues of PaTEH1A is shifted to 3'UTR by the retention of a 96-bp intron-containing coding-message, thus generating a new C-terminal end. We investigated the gating and pharmacological properties of the Drosophila Nav channel variant (DmNav1-1) co-expressed with DmTEH1, PaTEH1A, PaTEH1B or a truncated mutant PaTEH1Δ(270-280) in Xenopus oocytes. PaTEH1B caused a 2.2-fold current density decrease, concomitant with an equivalent α-subunit incorporation decrease in the plasma membrane, compared to PaTEH1A and PaTEH1Δ(270-280). PaTEH1B positively shifted the voltage-dependences of activation and slow inactivation of DmNav1-1 channels to more positive potentials compared to PaTEH1A, suggesting that the C-terminal end of both proteins may influence the function of the voltage-sensor and the pore of Nav channel. Interestingly, our findings showed that the sensitivity of DmNav1-1 channels to lidocaine and to the pyrazoline-type insecticide metabolite DCJW depends on associated TEH1-like subunits. In conclusion, our work demonstrates for the first time that density, gating and pharmacological properties of Nav channels expressed in Xenopus oocytes can be modulated by an intron retention process in the transcription of the neuronal TEH1-like ancillary subunits of P. americana.


Assuntos
Insetos/genética , Íntrons , Subunidades Proteicas , RNA Mensageiro/genética , Canais de Sódio Disparados por Voltagem/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar , Insetos/efeitos dos fármacos , Insetos/metabolismo , Masculino , Dados de Sequência Molecular , Oócitos/metabolismo , Especificidade de Órgãos/genética , RNA Mensageiro/química , Alinhamento de Sequência , Sódio/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo , Xenopus
10.
Toxicon ; 70: 123-34, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23651762

RESUMO

Tarantulas are included in the mygalomorph spider family Theraphosidae. Although the pharmacological diversity of theraphosid toxins (theraphotoxins) is broad, studies dedicated to the characterization of biologically active molecules from the theraphosid genus Acanthoscurria have been restricted to the investigation of antimicrobial peptides and polyamines produced by the hemocytes of Acanthoscurria gomesiana. The present study reports the purification, primary structure determination and electrophysiological effects of an anti-insect toxin, named µ-theraphotoxin-An1a (µ-TRTX-An1a), from the venom of Acanthoscurria natalensis - a tarantula species occurring in the Brazilian biomes caatinga and cerrado. The analysis of the primary structure of µ-TRTX-An1a revealed the similarity of this toxin to theraphosid toxins bearing a huwentoxin-II-like fold. Electrophysiological experiments showed that µ-TRTX-An1a (100 nM) induces membrane depolarization, increases the spontaneous firing frequency and reduces spike amplitude of cockroach dorsal unpaired median (DUM) neurons. In addition, under voltage-clamp conditions, µ-TRTX-An1a (100 nM) only partially blocks voltage-dependent sodium current amplitudes in DUM neurons without any effect on their voltage dependence. This effect correlates well with the reduction of the spontaneous action potential amplitudes. Altogether, these last results suggest that µ-TRTX-An1a affects insect neuronal voltage-dependent sodium channels, which are among possible channels targeted by this promiscuous toxin.


Assuntos
Inseticidas/farmacologia , Venenos de Aranha/farmacologia , Aranhas/química , Potenciais de Ação/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Agentes de Controle Biológico , Brasil , Baratas/efeitos dos fármacos , Baratas/crescimento & desenvolvimento , Feminino , Insetos/efeitos dos fármacos , Insetos/crescimento & desenvolvimento , Dados de Sequência Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Alinhamento de Sequência , Canais de Sódio/efeitos dos fármacos , Canais de Sódio/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
11.
Neurotoxicology ; 32(6): 828-35, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21684305

RESUMO

Phosphorylation by serine/threonine kinases has been described as a new mechanism for regulating the effects of insecticides on insect neuronal receptors and channels. Although insect GABA receptors are commercially important targets for insecticides (e.g. fipronil), their modulation by kinases is poorly understood and the influence of phosphorylation on insecticide sensitivity is unknown. Using the whole-cell patch-clamp technique, we investigated the modulatory effect of PKC and CaMKinase II on GABA receptor subtypes (GABAR1 and GABAR2) in DUM neurons isolated from the terminal abdominal ganglion (TAG) of Periplaneta americana. Chloride currents through GABAR2 were selectively abolished by PMA and PDBu (the PKC activators) and potentiated by Gö6983, an inhibitor of PKC. Furthermore, using KN-62, a specific CaMKinase II inhibitor, we demonstrated that CaMKinase II activation was also involved in the regulation of GABAR2 function. In addition, using CdCl(2) (the calcium channel blocker) and LOE-908, a blocker of TRPγ, we revealed that calcium influx through TRPγ played an important role in kinase activations. Comparative studies performed with CACA, a selective agonist of GABAR1 in DUM neurons confirmed the involvement of these kinases in the specific regulation of GABAR2. Furthermore, our study reported that GABAR1 was less sensitive than GABAR2 to fipronil. This was demonstrated by the biphasic concentration-response curve and the current-voltage relationship established with both GABA and CACA. Finally, we demonstrated that GABAR2 was 10-fold less sensitive to fipronil following inhibition of PKC, whereas inhibition of CaMKinase II did not alter the effect of fipronil.


Assuntos
Moduladores GABAérgicos/farmacologia , Inseticidas/farmacologia , Sistemas Neurossecretores/efeitos dos fármacos , Periplaneta/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Receptores de GABA/efeitos dos fármacos , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Relação Dose-Resposta a Droga , Ativadores de Enzimas/farmacologia , Masculino , Potenciais da Membrana , Sistemas Neurossecretores/citologia , Sistemas Neurossecretores/enzimologia , Técnicas de Patch-Clamp , Periplaneta/enzimologia , Fosforilação , Proteína Quinase C/metabolismo , Receptores de GABA/metabolismo , Fatores de Tempo
12.
PLoS One ; 4(6): e6096, 2009 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-19564920

RESUMO

The translocator protein (TSPO), previously designated as peripheral-type benzodiazepine receptor, is a protein mainly located in the outer mitochondrial membrane of eukaryotic cells. TSPO is implicated in major physiological functions and functionally associated with other proteins such as the voltage-dependent anionic channel, also designated as mitochondrial porin. Surprisingly, a TSPO-related protein was identified in the photosynthetic bacterium Rhodobacter sphaeroides but it was initially considered as a relict of evolution. In the present study we cloned a tspO gene in Pseudomonas fluorescens MF37, a non-photosynthetic eubacterium and we used bioinformatics tools to identify TSPO in the genome of 97 other bacteria. P. fluorescens TSPO was recognized by antibodies against mouse protein and by PK 11195, an artificial ligand of mitochondrial TSPO. As in eukaryotes, bacterial TSPO appears functionally organized as a dimer and the apparent Kd for PK 11195 is in the same range than for its eukaryotic counterpart. When P. fluorescens MF37 was treated with PK 11195 (10(-5) M) adhesion to living or artificial surfaces and biofilm formation activity were increased. Conversely, the apoptotic potential of bacteria on eukaryotic cells was significantly reduced. This effect of PK11195 was abolished in a mutant of P. fluorescens MF37 deficient for its major outer membrane porin, OprF. The present results demonstrate the existence of a bacterial TSPO that shares common structural and functional characteristics with its mammalian counterpart. This protein, apparently involved in adhesion and virulence, reveals the existence of a possible new inter kingdom signalling system and suggests that the human microbiome should be involuntarily exposed to the evolutionary pressure of benzodiazepines and related molecules. This discovery also represents a promising opportunity for the development of alternative antibacterial strategies.


Assuntos
Regulação Bacteriana da Expressão Gênica , Membranas Mitocondriais/metabolismo , Pseudomonas fluorescens/genética , Receptores de GABA-A/fisiologia , Receptores de GABA/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Benzodiazepinas/farmacologia , Adesão Celular , Genes Bacterianos , Genoma Bacteriano , Camundongos , Mitocôndrias/metabolismo , Modelos Biológicos , Modelos Genéticos , Receptores de GABA-A/genética , Virulência
13.
Eur J Med Chem ; 44(10): 3858-65, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19427714

RESUMO

The biological evaluation of some novel thiazoloindolo[3,2-c]quinoline, 8-substituted-11H-indolo[3,2-c]quinolines is described. These compounds were obtained via Graebe-Ullmann thermal cyclization from appropriated N-arylated benzotriazoles. 7H-4,7-Diaza-benzo[de]anthracene, a reaction by-product structurally closed to the pyridoacridine skeleton was also identified. All thiazolobenzotriazole intermediates were tested in vitro for their capacity to inhibit the growth of two breast cancer cell lines, MCF-7 and MDA-MB-231. In parallel, the newly synthesized skeletons were evaluated for DNA interaction, topoisomerases' inhibition, and cytotoxicity against HL60 and HL60/MX2 human leukemia cells. Most compounds showed a potent growth inhibitory effect on all the tested cell lines, with IC(50) in the muM range.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Quinolinas/química , Quinolinas/farmacologia , Triazóis/química , Triazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Feminino , Humanos , Indóis/química , Leucemia/tratamento farmacológico , Quinolinas/síntese química , Quinolinas/toxicidade , Tiazóis/química , Inibidores da Topoisomerase I , Triazóis/síntese química , Triazóis/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA