Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomech ; 148: 111472, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36753853

RESUMO

Cartilage repair has been studied extensively in the context of injury and disease, but the joint's management of regular sub-injurious damage to cartilage, or 'wear and tear,' which occurs due to normal activity, is poorly understood. We hypothesize that this cartilage maintenance is mediated in part by cells derived from the synovium that migrate to the worn articular surface. Here, we demonstrate in vitro that the early steps required for such a process can occur. First, we show that under physiologic mechanical loads, chondrocyte death occurs in the cartilage superficial zone along with changes to the cartilage surface topography. Second, we show that synoviocytes are released from the synovial lining under physiologic loads and attach to worn cartilage. Third, we show that synoviocytes parachuted onto a simulated or native cartilage surface will modify their behavior. Specifically, we show that synoviocyte interactions with chondrocytes lead to changes in synoviocyte mechanosensitivity, and we demonstrate that cartilage-attached synoviocytes can express COL2A1, a hallmark of the chondrogenic phenotype. Our findings suggest that synoviocyte-mediated repair of cartilage 'wear and tear' as a component of joint homeostasis is feasible and is deserving of future study.


Assuntos
Cartilagem Articular , Sinoviócitos , Cartilagem Articular/fisiologia , Membrana Sinovial/fisiologia , Condrócitos
2.
Front Bioeng Biotechnol ; 10: 825046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265601

RESUMO

Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation and inflammation of synovium, the specialized connective tissue that envelops the diarthrodial joint. Type 2 diabetes mellitus (DM) is often found in OA patients, with nearly double the incidence of arthritis reported in patients with diabetes (52%) than those without it (27%). The correlation between OA and DM has been attributed to similar risk factors, namely increasing age and joint loading due to obesity. However, a potential causative link is not well understood due to comorbidities involved with treating diabetic patients, such as high infection rates and poor healing response caused by hyperglycemia and insulin resistance. The purpose of this study was to investigate the effect of hyperglycemic and insulin culture conditions on synovium properties. It was hypothesized that modeling hyperglycemia-induced insulin resistance in synovium would provide novel insights of OA pathogenesis in DM patients. To simulate DM in the synovial joint, healthy synovium was preconditioned in either euglycemic (EG) or hyperglycemic (HG) glucose concentrations with insulin in order to induce the biological response of the diseased phenotype. Synovium biochemical composition was evaluated to determine ECM remodeling under hyperglycemic culture conditions. Concurrent changes in AKT phosphorylation, a signaling pathway implicated in insulin resistance, were measured along with gene expression data for insulin receptors, glucose transporters, and specific glycolysis markers involved in glucose regulation. Since fluid shear stress arising during joint articulation is a relevant upstream stimulus for fibroblast-like synoviocytes (FLS), the predominant cell type in synovium, FLS mechanotransduction was evaluated via intracellular calcium ([Ca2+]i). Incidence and length of primary cilia, a critical effector of cell mechanosensing, were measured as potential mechanisms to support differences in [Ca2+]i responses. Hyperglycemic culture conditions decreased collagen and GAG content compared to EG groups, while insulin recovered ECM constituents. FLS mechanosensitivity was significantly greater in EG and insulin conditions compared to HG and non-insulin treated groups. Hyperglycemic treatment led to decreased incidence and length of primary cilia and decreased AKT phosphorylation, providing possible links to the mechanosensing response and suggesting a potential correlation between glycemic culture conditions, diabetic insulin resistance, and OA development.

3.
J Biomech ; 127: 110668, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34399243

RESUMO

Cartilage wear particles are released into the synovial fluid by mechanical and chemical degradation of the articular surfaces during osteoarthritis and attach to the synovial membrane. Accumulation of wear particles could alter key tissue-level mechanical properties of the synovium, hindering its characteristically low-friction interactions with underlying articular surfaces in the synovial joint. The present study employs a custom loading device to further the characterization of native synovium friction properties, while investigating the hypothesis that attachment of cartilage wear particles increases friction coefficient. Juvenile bovine synovium demonstrated characteristically low friction coefficients in sliding contact with glass, in agreement with historical measurements. Friction coefficient increased with higher normal load in saline, while lubrication with native synovial fluid maintained low friction coefficients at higher loads. Cartilage wear particles generated from juvenile bovine cartilage attached directly to synovium explants in static culture, with incorporation onto the tissue denoted by cell migration onto the particle surface. In dilute synovial fluid mimicking the decreased lubricating properties during osteoarthritis, wear particle attachment significantly increased friction coefficient against glass, and native cartilage and synovium. In addition to providing a novel characterization of synovial joint tribology this work highlights a potential mechanism for cartilage wear particles to perpetuate the degradative environment of osteoarthritis by modulating tissue-level properties of the synovium that could impact macroscopic wear as well as mechanical stimuli transmitted to resident cells.


Assuntos
Cartilagem Articular , Animais , Bovinos , Fricção , Lubrificação , Estresse Mecânico , Líquido Sinovial , Membrana Sinovial
4.
J Orthop Res ; 37(9): 1979-1987, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31062877

RESUMO

The synovium plays a key role in the development of osteoarthritis, as evidenced by pathological changes to the tissue observed in both early and late stages of the disease. One such change is the attachment of cartilage wear particles to the synovial intima. While this phenomenon has been well observed clinically, little is known of the biological effects that such particles have on resident cells in the synovium. The present work investigates the hypothesis that cartilage wear particles elicit a pro-inflammatory response in diseased and healthy human fibroblast-like synoviocytes, like that induced by key cytokines in osteoarthritis. Fibroblast-like synoviocytes from 15 osteoarthritic human donors and a subset of three non-osteoarthritic donors were exposed to cartilage wear particles, interleukin-1α or tumor necrosis factor-α for 6 days and analyzed for proliferation, matrix production, and release of pro-inflammatory mediators and degradative enzymes. Wear particles significantly increased proliferation and release of nitric oxide, interleukin-6 and -8, and matrix metalloproteinase-9, -10, and -13 in osteoarthritic synoviocytes, mirroring the effects of both cytokines, with similar trends in non-osteoarthritic cells. These results suggest that cartilage wear particles are a relevant physical factor in the osteoarthritic environment, perpetuating the pro-inflammatory and pro-degradative cascade by modulating synoviocyte behavior at early and late stages of the disease. Future work points to therapeutic strategies for slowing disease progression that target cell-particle interactions. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1979-1987, 2019.


Assuntos
Cartilagem/fisiologia , Citocinas/farmacologia , Inflamação/etiologia , Sinoviócitos/imunologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Fibroblastos/imunologia , Humanos , Interleucina-1/farmacologia , Masculino , Pessoa de Meia-Idade , Osteoartrite/etiologia , Fator de Necrose Tumoral alfa/farmacologia
5.
J Biomech ; 60: 91-99, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28716465

RESUMO

Fibroblast-like synoviocytes (FLS) reside in the synovial membrane of diarthrodial joints and are exposed to a dynamic fluid environment that presents both physical and chemical stimuli. The ability of FLS to sense and respond to these stimuli plays a key role in their normal function, and is implicated in the alterations to function that occur in osteoarthritis (OA). The present work characterizes the response of FLS to fluid flow-induced shear stress via real-time calcium imaging, and tests the hypothesis that this response is modulated by interleukin-1α (IL-1α), a cytokine elevated in OA. FLS demonstrated a robust calcium signaling response to fluid shear that was dose dependent upon stress level and required both external and internal calcium sources. Preconditioning with 10ng/mL IL-1α for 24h heightened this shear stress response by significantly increasing the percent of responding cells and peak magnitude, while significantly decreasing the time for a peak to occur. Intercellular communication via gap junctions was found to account for a portion of the FLS population response in normal conditions, and was significantly increased by IL-1α preconditioning. IL-1α was also found to significantly increase average length and incidence of the primary cilium, an organelle commonly implicated in shear mechanosensing. These findings suggest that the elevated levels of IL-1α found in the OA environment heighten FLS sensitivity to fluid shear by altering both intercellular communication and individual cell sensitivity, which could affect downstream functions and contribute to progression of the disease state.


Assuntos
Fibroblastos/fisiologia , Interleucina-1alfa/fisiologia , Osteoartrite/fisiopatologia , Sinoviócitos/fisiologia , Animais , Fenômenos Biomecânicos , Bovinos , Células Cultivadas , Cílios/fisiologia , Estresse Mecânico , Líquido Sinovial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA