Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Biol Sci ; 283(1833)2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27335419

RESUMO

Animal-mediated pollination is required for the reproduction of the majority of angiosperms, and pollinators are therefore essential for ecosystem functioning and the economy. Two major threats to insect pollinators are anthropogenic land-use change and the spread of pathogens, whose effects may interact to impact pollination. Here, we investigated the relative effects on the ecosystem service of pollination of (i) land-use change brought on by agriculture and urbanization as well as (ii) the prevalence of pollinator parasites, using experimental insect pollinator-dependent plant species in natural pollinator communities. We found that pollinator habitat (i.e. availability of nesting resources for ground-nesting bees and local flower richness) was strongly related to flower visitation rates at the local scale and indirectly influenced plant pollination success. At the landscape scale, pollination was positively related to urbanization, both directly and indirectly via elevated visitation rates. Bumblebees were the most abundant pollinator group visiting experimental flowers. Prevalence of trypanosomatids, such as the common bumblebee parasite Crithidia bombi, was higher in urban compared with agricultural areas, a relationship which was mediated through higher Bombus abundance. Yet, we did not find any top-down, negative effects of bumblebee parasitism on pollination. We conclude that urban areas can be places of high transmission of both pollen and pathogens.


Assuntos
Abelhas/fisiologia , Abelhas/parasitologia , Ecossistema , Polinização , Urbanização , Animais , Crithidia , Flores
2.
Mol Ecol ; 24(13): 3257-68, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25958977

RESUMO

The genetic structure of the earth bumblebee (Bombus terrestris L.) was examined across 22 wild populations and two commercially reared populations using eight microsatellite loci and two mitochondrial genes. Our study included wild bumblebee samples from six populations in Ireland, one from the Isle of Man, four from Britain and 11 from mainland Europe. A further sample was acquired from New Zealand. Observed levels of genetic variability and heterozygosity were low in Ireland and the Isle of Man, but relatively high in continental Europe and among commercial populations. Estimates of Fst revealed significant genetic differentiation among populations. Bayesian cluster analysis indicated that Irish populations were highly differentiated from British and continental populations, the latter two showing higher levels of admixture. The data suggest that the Irish Sea and prevailing south westerly winds act as a considerable geographical barrier to gene flow between populations in Ireland and Britain; however, some immigration from the Isle of Man to Ireland was detected. The results are discussed in the context of the recent commercialization of bumblebees for the European horticultural industry.


Assuntos
Abelhas/genética , Genética Populacional , Animais , Teorema de Bayes , Análise por Conglomerados , Meio Ambiente , Europa (Continente) , Fluxo Gênico , Genes Mitocondriais , Variação Genética , Genótipo , Irlanda , Desequilíbrio de Ligação , Repetições de Microssatélites , Dados de Sequência Molecular , Filogenia , Filogeografia , Análise de Sequência de DNA , Reino Unido
3.
R Soc Open Sci ; 11(1): 231529, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38204792

RESUMO

Invasive vectors can induce dramatic changes in disease epidemiology. While viral emergence following geographical range expansion of a vector is well known, the influence a vector can have at the level of the host's pathobiome is less well understood. Taking advantage of the formerly heterogeneous spatial distribution of the ectoparasitic mite Varroa destructor that acts as potent virus vector among honeybees Apis mellifera, we investigated the impact of its recent global spread on the viral community of honeybees in a retrospective study of historical samples. We hypothesized that the vector has had an effect on the epidemiology of several bee viruses, potentially altering their transmissibility and/or virulence, and consequently their prevalence, abundance, or both. To test this, we quantified the prevalence and loads of 14 viruses from honeybee samples collected in mite-free and mite-infested populations in four independent geographical regions. The presence of the mite dramatically increased the prevalence and load of deformed wing virus, a cause of unsustainably high colony losses. In addition, several other viruses became more prevalent or were found at higher load in mite-infested areas, including viruses not known to be actively varroa-transmitted, but which may increase opportunistically in varroa-parasitized bees.

4.
Ann Bot ; 112(9): 1743-50, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24169594

RESUMO

BACKGROUND AND AIMS: Riparian systems are prone to invasion by alien plant species. The spread of invasive riparian plants may be facilitated by hydrochory, the transport of seeds by water, but while ecological studies have highlighted the possible role of upstream source populations in the establishment and persistence of stands of invasive riparian plant species, population genetic studies have as yet not fully addressed the potential role of hydrochoric dispersal in such systems. METHODS: A population genetics approach based on a replicated bifurcate sampling design is used to test hypotheses consistent with patterns of unidirectional, linear gene flow expected under hydrochoric dispersal of the invasive riparian plant Impatiens glandulifera in two contrasting river systems. KEY RESULTS: A significant increase in levels of genetic diversity downstream was observed, consistent with the accumulation of propagules from upstream source populations, and strong evidence was found for organization of this diversity between different tributaries, reflecting the dendritic organization of the river systems studied. CONCLUSIONS: These findings indicate that hydrochory, rather than anthropogenic dispersal, is primarily responsible for the spread of I. glandulifera in these river systems, and this is relevant to potential approaches to the control of invasive riparian plant species.


Assuntos
Fluxo Gênico , Impatiens/genética , Espécies Introduzidas , Rios , Dispersão de Sementes , Animais , Variação Genética , País de Gales
5.
Biol Conserv ; 159: 269-276, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32287339

RESUMO

Worldwide, wild bumble bees (Bombus spp.) are experiencing marked declines, with potentially up to 11% of species currently under threat. Recent studies from North America suggest that disease transmission from commercially reared bumble bees to wild populations has led to marked range contractions in some species. In Europe, data on the prevalence of pathogen spillover from commercial to wild bumble bee populations is lacking, despite the widespread production and transport of hives within the EU since the early 1980s. We determined the permeability of cropping systems to commercial bumble bees, and quantified the prevalence of four pathogens in commercial Bombus terrestris hives and adjacent conspecific populations at increasing distances from greenhouses in Ireland. Commercial bumble bees collected from 31% to 97% of non-crop pollen, depending on the cropping system, and hives had markedly higher frequencies of two gut parasites, Crithidia spp. and Nosema bombi, compared to adjacent populations, but were free of tracheal mites. The highest prevalence of Crithida was observed within 2 km of greenhouses and the probability of infection declined in a host sex- and pathogen-specific manner up to 10 km. We suggest implementing measures that prevent the interaction of commercially reared and wild bumble bees by integrating the enforcement of national best management practices for users of commercial pollinators with international legislation that regulates the sanitation of commercial hives in production facilities.

6.
Mol Ecol ; 19(22): 4922-35, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21040051

RESUMO

Globally, there is concern over the decline of bees, an ecologically important group of pollinating insects. Genetic studies provide insights into population structure that are crucial for conservation management but that would be impossible to obtain by conventional ecological methods. Yet conservation genetic studies of bees have primarily focussed on social species rather than the more species-rich solitary bees. Here, we investigate the population structure of Colletes floralis, a rare and threatened solitary mining bee, in Ireland and Scotland using nine microsatellite loci. Genetic diversity was surprisingly as high in Scottish (Hebridean island) populations at the extreme northwestern edge of the species range as in mainland Irish populations further south. Extremely high genetic differentiation among populations was detected; multilocus F(ST) was up to 0.53, and and D(est) were even higher (maximum: 0.85 and 1.00, respectively). A pattern of isolation by distance was evident for sites separated by land. Water appears to act as a substantial barrier to gene flow yet sites separated by sea did not exhibit isolation by distance. C. floralis populations are extremely isolated and probably not in regional migration-drift equilibrium. GIS-based landscape genetic analysis reveals urban areas as a potential and substantial barrier to gene flow. Our results highlight the need for urgent site-specific management action to halt the decline of this and potentially other rare solitary bees.


Assuntos
Abelhas/genética , Meio Ambiente , Genética Populacional , Animais , Ecossistema , Feminino , Fluxo Gênico , Variação Genética , Irlanda , Masculino , Repetições de Microssatélites , Densidade Demográfica , Escócia
7.
Nat Commun ; 11(1): 576, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996690

RESUMO

Urbanisation is an important global driver of biodiversity change, negatively impacting some species groups whilst providing opportunities for others. Yet its impact on ecosystem services is poorly investigated. Here, using a replicated experimental design, we test how Central European cities impact flying insects and the ecosystem service of pollination. City sites have lower insect species richness, particularly of Diptera and Lepidoptera, than neighbouring rural sites. In contrast, Hymenoptera, especially bees, show higher species richness and flower visitation rates in cities, where our experimentally derived measure of pollination is correspondingly higher. As well as revealing facets of biodiversity (e.g. phylogenetic diversity) that correlate well with pollination, we also find that ecotones in insect-friendly green cover surrounding both urban and rural sites boost pollination. Appropriately managed cities could enhance the conservation of Hymenoptera and thereby act as hotspots for pollination services that bees provide to wild flowers and crops grown in urban settings.


Assuntos
Abelhas/fisiologia , Ecologia , Insetos/fisiologia , Polinização , Urbanização , Animais , Abelhas/classificação , Biodiversidade , Cidades , Dípteros , Ecossistema , Flores , Alemanha , Himenópteros , Insetos/classificação , Lepidópteros , Filogenia
8.
Conserv Biol ; 21(5): 1324-32, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17883497

RESUMO

A World Conservation Union (IUCN) regional red list is an objective assessment of regional extinction risk and is not the same as a list of conservation priority species. Recent research reveals the widespread, but incorrect, assumption that IUCN Red List categories represent a hierarchical list of priorities for conservation action. We developed a simple eight-step priority-setting process and applied it to the conservation of bees in Ireland. Our model is based on the national red list but also considers the global significance of the national population; the conservation status at global, continental, and regional levels; key biological, economic, and societal factors; and is compatible with existing conservation agreements and legislation. Throughout Ireland, almost one-third of the bee fauna is threatened (30 of 100 species), but our methodology resulted in a reduced list of only 17 priority species. We did not use the priority species list to broadly categorize species to the conservation action required; instead, we indicated the individual action required for all threatened, near-threatened, and data-deficient species on the national red list based on the IUCN's conservation-actions template file. Priority species lists will strongly influence prioritization of conservation actions at national levels, but action should not be exclusive to listed species. In addition, all species on this list will not necessarily require immediate action. Our method is transparent, reproducible, and readily applicable to other taxa and regions.


Assuntos
Abelhas/fisiologia , Conservação dos Recursos Naturais/métodos , Animais , Biodiversidade , Bases de Dados Factuais , Agências Internacionais , Irlanda , Modelos Biológicos , Dinâmica Populacional
9.
J Appl Ecol ; 54(6): 1814-1824, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29200497

RESUMO

Traditional tropical agriculture often entails a form of slash-and-burn land management that may adversely affect ecosystem services such as pollination, which are required for successful crop yields. The Yucatán Peninsula of Mexico has a >4000 year history of traditional slash-and-burn agriculture, termed 'milpa'. Hot 'Habanero' chilli is a major pollinator-dependent crop that nowadays is often grown in monoculture within the milpa system.We studied 37 local farmers' chilli fields (sites) to evaluate the effects of landscape composition on bee communities. At 11 of these sites, we undertook experimental pollination treatments to quantify the pollination of chilli. We further explored the relationships between landscape composition, bee communities and pollination service provision to chilli.Bee species richness, particularly species of the family Apidae, was positively related to the amount of forest cover. Species diversity decreased with increasing proportion of crop land surrounding each sampling site. Sweat bees of the genus Lasioglossum were the most abundant bee taxon in chilli fields and, in contrast to other bee species, increased in abundance with the proportion of fallow land, gardens and pastures which are an integral part of the milpa system.There was an average pollination shortfall of 21% for chilli across all sites; yet the shortfall was unrelated to the proportion of land covered by crops. Rather, chilli pollination was positively related to the abundance of Lasioglossum bees, probably an important pollinator of chilli, as well indirectly to the proportion of fallow land, gardens and pastures that promote Lasioglossum abundance. Synthesis and applications. Current, low-intensity traditional slash-and-burn (milpa) agriculture provides Lasioglossum spp. pollinators for successful chilli production; fallow land, gardens and pasture therefore need to be valued as important habitats for these and related ground-nesting bee species. However, the negative impact of agriculture on total bee species diversity highlights how agricultural intensification is likely to reduce pollination services to crops, including chilli. Indeed, natural forest cover is vital in tropical Yucatán to maintain a rich assemblage of bee species and the provision of pollination services for diverse crops and wild flowers.

10.
PLoS One ; 8(12): e81475, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24324696

RESUMO

The worldwide spread of diseases is considered a major threat to biodiversity and a possible driver of the decline of pollinator populations, particularly when novel species or strains of parasites emerge. Previous studies have suggested that populations of introduced European honeybee (Apis mellifera) and bumblebee species (Bombus terrestris and Bombus ruderatus) in Argentina share the neogregarine parasite Apicystis bombi with the native bumblebee (Bombus dahlbomii). In this study we investigated whether A. bombi is acting as an emergent parasite in the non-native populations. Specifically, we asked whether A. bombi, recently identified in Argentina, was introduced by European, non-native bees. Using ITS1 and ITS2 to assess the parasite's intraspecific genetic variation in bees from Argentina and Europe, we found a largely unstructured parasite population, with only 15% of the genetic variation being explained by geographic location. The most abundant haplotype in Argentina (found in all 9 specimens of non-native species) was identical to the most abundant haplotype in Europe (found in 6 out of 8 specimens). Similarly, there was no evidence of structuring by host species, with this factor explaining only 17% of the genetic variation. Interestingly, parasites in native Bombus ephippiatus from Mexico were genetically distant from the Argentine and European samples, suggesting that sufficient variability does exist in the ITS region to identify continent-level genetic structure in the parasite. Thus, the data suggest that A. bombi from Argentina and Europe share a common, relatively recent origin. Although our data did not provide information on the direction of transfer, the absence of genetic structure across space and host species suggests that A. bombi may be acting as an emergent infectious disease across bee taxa and continents.


Assuntos
Apicomplexa/genética , Abelhas/parasitologia , Variação Genética , Animais , Argentina , Evolução Biológica , Europa (Continente) , Geografia , Haplótipos/genética , Dados de Sequência Molecular , Especificidade da Espécie
11.
PLoS One ; 7(1): e29251, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22238595

RESUMO

Cryptic diversity within bumblebees (Bombus) has the potential to undermine crucial conservation efforts designed to reverse the observed decline in many bumblebee species worldwide. Central to such efforts is the ability to correctly recognise and diagnose species. The B. lucorum complex (Bombus lucorum, B. cryptarum and B. magnus) comprises one of the most abundant and important group of wild plant and crop pollinators in northern Europe. Although the workers of these species are notoriously difficult to diagnose morphologically, it has been claimed that queens are readily diagnosable from morphological characters. Here we assess the value of colour-pattern characters in species identification of DNA-barcoded queens from the B. lucorum complex. Three distinct molecular operational taxonomic units were identified each representing one species. However, no uniquely diagnostic colour-pattern character state was found for any of these three molecular units and most colour-pattern characters showed continuous variation among the units. All characters previously deemed to be unique and diagnostic for one species were displayed by specimens molecularly identified as a different species. These results presented here raise questions on the reliability of species determinations in previous studies and highlights the benefits of implementing DNA barcoding prior to ecological, taxonomic and conservation studies of these important key pollinators.


Assuntos
Abelhas/classificação , Abelhas/genética , Abelhas/fisiologia , Código de Barras de DNA Taxonômico/métodos , Pigmentação/fisiologia , Animais , Sequência de Bases , Abelhas/anatomia & histologia , Tamanho Corporal/genética , Cor , Código de Barras de DNA Taxonômico/normas , Genoma de Inseto/fisiologia , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Tórax/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA