Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Breast Cancer Res ; 22(1): 122, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148314

RESUMO

BACKGROUND: The role of nuclear receptors in both the aetiology and treatment of breast cancer is exemplified by the use of the oestrogen receptor (ER) as a prognostic marker and treatment target. Treatments targeting the oestrogen signalling pathway are initially highly effective for most patients. However, for the breast cancers that fail to respond, or become resistant, to current endocrine treatments, the long-term outlook is poor. ER is a member of the nuclear receptor superfamily, comprising 48 members in the human, many of which are expressed in the breast and could be used as alternative targets in cases where current treatments are ineffective. METHODS: We used sparse canonical correlation analysis to interrogate potential novel nuclear receptor expression relationships in normal breast and breast cancer. These were further explored using whole transcriptome profiling in breast cancer cells after combinations of ligand treatments. RESULTS: Using this approach, we discovered a tumour suppressive relationship between the mineralocorticoid receptor (MR) and retinoic acid receptors (RAR), in particular RARß. Expression profiling of MR expressing breast cancer cells revealed that mineralocorticoid and retinoid co-treatment activated an expression program consistent with a reverse Warburg effect and growth inhibition, which was not observed with either ligand alone. Moreover, high expression of both MR and RARB was associated with improved breast cancer-specific survival. CONCLUSION: Our study reveals a previously unknown relationship between MR and RAR in the breast, which is dependent on menopausal state and altered in malignancy. This finding identifies potential new targets for the treatment of breast cancers that are refractory to existing therapeutic options.


Assuntos
Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Receptores de Mineralocorticoides/metabolismo , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais , Efeito Warburg em Oncologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Biologia Computacional , Feminino , Humanos , Receptores de Estrogênio/metabolismo , Receptores de Mineralocorticoides/genética , Taxa de Sobrevida , Células Tumorais Cultivadas
2.
Exerc Sport Sci Rev ; 46(2): 97-104, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29346164

RESUMO

Exercise induces various physical and metabolic changes in skeletal muscle that adaptively reprograms this tissue to current physiological and environmental demands. Underlying these changes are broad modifications to gene expression. We postulate that the nuclear hormone receptor, Nor-1, is activated after exercise, and this transcription factor modifies gene expression to drive the molecular and cellular adaptations associated with contractile reorganization.


Assuntos
Adaptação Fisiológica , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Membro 3 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Animais , Autofagia , Sinalização do Cálcio , Expressão Gênica , Humanos , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Sarcômeros/metabolismo
3.
Am J Physiol Endocrinol Metab ; 308(2): E159-71, 2015 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-25424999

RESUMO

The Rar-related orphan receptor-α (Rorα) is a nuclear receptor that regulates adiposity and is a potential regulator of energy homeostasis. We have demonstrated that the Rorα-deficient staggerer (sg/sg) mice display a lean and obesity-resistant phenotype. Adaptive Ucp1-dependent thermogenesis in beige/brite and brown adipose tissue serves as a mechanism to increase energy expenditure and resist obesity. DEXA and MRI analysis demonstrated significantly decreased total fat mass and fat/lean mass tissue ratio in male chow-fed sg/sg mice relative to wt mice. In addition, we observed increased Ucp1 expression in brown adipose and subcutaneous white adipose tissue but not in visceral adipose tissue from Rorα-deficient mice. Moreover, this was associated with significant increases in the expression of the mRNAs encoding the thermogenic genes (i.e., markers of brown and beige adipose) Pparα, Errα, Dio2, Acot11/Bfit, Cpt1ß, and Cidea in the subcutaneous adipose in the sg/sg relative to WT mice. These changes in thermogenic gene expression involved the significantly increased expression of the (cell-fate controlling) histone-lysine N-methyltransferase 1 (Ehmt1), which stabilizes the Prdm16 transcriptional complex. Moreover, primary brown adipocytes from sg/sg mice displayed a higher metabolic rate, and further analysis was consistent with increased uncoupling. Finally, core body temperature analysis and infrared thermography demonstrated that the sg/sg mice maintained greater thermal control and cold tolerance relative to the WT littermates. We suggest that enhanced Ucp1 and thermogenic gene expression/activity may be an important contributor to the lean, obesity-resistant phenotype in Rorα-deficient mice.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Regulação da Expressão Gênica/fisiologia , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Obesidade/metabolismo , Termogênese/fisiologia , Absorciometria de Fóton , Animais , Composição Corporal/fisiologia , Temperatura Corporal/fisiologia , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Mutantes Neurológicos , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , RNA/química , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Termogênese/genética , Fatores de Transcrição/metabolismo , Proteína Desacopladora 1
4.
Nature ; 456(7222): 643-7, 2008 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-18931657

RESUMO

The lymphatic system plays a key role in tissue fluid regulation and tumour metastasis, and lymphatic defects underlie many pathological states including lymphoedema, lymphangiectasia, lymphangioma and lymphatic dysplasia. However, the origins of the lymphatic system in the embryo, and the mechanisms that direct growth of the network of lymphatic vessels, remain unclear. Lymphatic vessels are thought to arise from endothelial precursor cells budding from the cardinal vein under the influence of the lymphatic hallmark gene Prox1 (prospero homeobox 1; ref. 4). Defects in the transcription factor gene SOX18 (SRY (sex determining region Y) box 18) cause lymphatic dysfunction in the human syndrome hypotrichosis-lymphoedema-telangiectasia, suggesting that Sox18 may also play a role in lymphatic development or function. Here we use molecular, cellular and genetic assays in mice to show that Sox18 acts as a molecular switch to induce differentiation of lymphatic endothelial cells. Sox18 is expressed in a subset of cardinal vein cells that later co-express Prox1 and migrate to form lymphatic vessels. Sox18 directly activates Prox1 transcription by binding to its proximal promoter. Overexpression of Sox18 in blood vascular endothelial cells induces them to express Prox1 and other lymphatic endothelial markers, while Sox18-null embryos show a complete blockade of lymphatic endothelial cell differentiation from the cardinal vein. Our findings demonstrate a critical role for Sox18 in developmental lymphangiogenesis, and suggest new avenues to investigate for therapeutic management of human lymphangiopathies.


Assuntos
Diferenciação Celular , Vasos Linfáticos/citologia , Vasos Linfáticos/embriologia , Fatores de Transcrição SOXF/metabolismo , Animais , Biomarcadores/análise , Movimento Celular , Células Cultivadas , Edema/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Efrina-B2/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Hipotricose/genética , Linfangiogênese , Vasos Linfáticos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Regiões Promotoras Genéticas/genética , Fatores de Transcrição SOXF/deficiência , Fatores de Transcrição SOXF/genética , Telangiectasia/genética , Proteínas Supressoras de Tumor/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Veias/citologia
5.
Physiology (Bethesda) ; 27(3): 156-66, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22689791

RESUMO

Nuclear hormone receptors (NRs) are a superfamily of eukaryotic ligand-dependent transcription factors that translate endocrine, metabolic, nutritional, developmental, and pathophysiological signals into gene regulation. Members of the NR superfamily (on the basis of sequence homology) that lack identified natural and/or synthetic ligands are/were classified as "orphan" NRs. These members of the NR superfamily are abundantly expressed in tissues associated with major metabolic activity, such as skeletal muscle, adipose, and liver. Subsequently, in vivo genetic studies on these orphan NRs and exploitation of novel natural and synthetic agonists has revealed that orphan NRs regulate 1) carbohydrate, lipid, and energy homeostasis in a tissue-specific manner, and 2) the pathophysiology of dyslipidemia, obesity, Type 2 diabetes, and cardiovascular disease. This review discusses key studies that have implicated the orphan NRs as organ-specific regulators of metabolism and mediators of adverse pathophysiological effects. The emerging discovery of novel endogenous orphan NR ligands and synthetic agonists has provided the foundation for therapeutic exploitation of the orphans in the treatment of metabolic disease.


Assuntos
Metabolismo Energético/fisiologia , Obesidade/metabolismo , Receptores Nucleares Órfãos/metabolismo , Tecido Adiposo/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Fígado/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais/fisiologia
6.
Breast Cancer Res Treat ; 142(1): 211-23, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24122391

RESUMO

The interaction between breast tumor epithelial and stromal cells is vital for initial and recurrent tumor growth. While breast cancer-associated stromal cells provide a favorable environment for proliferation and metastasis, the molecular mechanisms contributing to this process are not fully understood. Nuclear receptors (NRs) are intracellular transcription factors that directly regulate gene expression. Little is known about the status of NRs in cancer-associated stroma. Nuclear Receptor Low-Density Taqman Arrays were used to compare the gene expression profiles of all 48 NR family members in a collection of primary cultured cancer-associated fibroblasts (CAFs) obtained from estrogen receptor (ER)α positive breast cancers (n = 9) and normal breast adipose fibroblasts (NAFs) (n = 7). Thirty-three of 48 NRs were expressed in both the groups, while 11 NRs were not detected in either. Three NRs (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (DAX-1); estrogen-related receptor beta (ERR-ß); and RAR-related orphan receptor beta (ROR-ß)) were only detected in NAFs, while one NR (liver receptor homolog-1 (LRH-1)) was unique to CAFs. Of the NRs co-expressed, four were significantly down-regulated in CAFs compared with NAFs (RAR-related orphan receptor-α (ROR-α); Thyroid hormone receptor-ß (TR-ß); vitamin D receptor (VDR); and peroxisome proliferator-activated receptor-γ (PPAR-γ)). Quantitative immunohistochemistry for LRH-1, TR-ß, and PPAR-γ proteins in stromal fibroblasts from an independent panel of breast cancers (ER-positive (n = 15), ER-negative (n = 15), normal (n = 14)) positively correlated with mRNA expression profiles. The differentially expressed NRs identified in tumor stroma are key mediators in aromatase regulation and subsequent estrogen production. Our findings reveal a distinct pattern of NR expression that therefore fits with a sustained and increased local estrogen microenvironment in ER-positive tumors. NRs in CAFs may provide a new avenue for the development of intratumoral-targeted therapies in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Células Estromais/metabolismo , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/genética , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Gradação de Tumores , Receptor ErbB-2/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Fatores de Risco
7.
IUBMB Life ; 65(8): 657-64, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23846999

RESUMO

Glycogen is an energy storage depot for the mammalian species. This review focuses on recent developments that have identified the role of nuclear hormone receptor (NR) signaling and epigenomic control in the regulation of important genes that modulate glycogen metabolism. Specifically, new studies have revealed that the NR4A subgroup (of the NR superfamily) are strikingly sensitive to beta-adrenergic stimulation in skeletal muscle, and transgenic studies in mice have revealed the expression of these NRs affects endurance and glycogen levels in muscle. Furthermore, other studies have demonstrated that one of the NR coregulator class of enzymes that mediate chromatin remodeling, the histone methyltransferases (for example, protein arginine methyltransferase 4) regulates the expression of several genes involved in glycogen metabolism and glycogen storage diseases in skeletal muscle. Importantly, NRs and histone methyltransferases, have the potential to be pharmacologically exploited and may provide novel targets in the quest to treat disorders of glycogen storage.


Assuntos
Epigenômica , Glicogênio/metabolismo , Músculo Esquelético/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Doença de Depósito de Glicogênio/fisiopatologia , Camundongos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , Proteína-Arginina N-Metiltransferases/metabolismo
8.
Hepatology ; 55(5): 1574-84, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22105343

RESUMO

UNLABELLED: Caveolin-1 (CAV1) is a structural protein of caveolae involved in lipid homeostasis and endocytosis. Using newly generated pure Balb/C CAV1 null ((Balb/C)CAV1-/-) mice, CAV1-/- mice from Jackson Laboratories ((JAX)CAV1-/-), and CAV1-/- mice developed in the Kurzchalia Laboratory ((K)CAV1-/-), we show that under physiological conditions CAV1 expression in mouse tissues is necessary to guarantee an efficient progression of liver regeneration and mouse survival after partial hepatectomy. Absence of CAV1 in mouse tissues is compensated by the development of a carbohydrate-dependent anabolic adaptation. These results were supported by extracellular flux analysis of cellular glycolytic metabolism in CAV1-knockdown AML12 hepatocytes, suggesting cell autonomous effects of CAV1 loss in hepatic glycolysis. Unlike in (K)CAV1-/- livers, in (JAX)CAV1-/- livers CAV1 deficiency is compensated by activation of anabolic metabolism (pentose phosphate pathway and lipogenesis) allowing liver regeneration. Administration of 2-deoxy-glucose in (JAX)CAV1-/- mice indicated that liver regeneration in (JAX)CAV1-/- mice is strictly dependent on hepatic carbohydrate metabolism. Moreover, with the exception of regenerating (JAX)CAV1-/- livers, expression of CAV1 in mice is required for efficient hepatic lipid storage during fasting, liver regeneration, and diet-induced steatosis in the three CAV1-/- mouse strains. Furthermore, under these conditions CAV1 accumulates in the lipid droplet fraction in wildtype mouse hepatocytes. CONCLUSION: Our data demonstrate that lack of CAV1 alters hepatocyte energy metabolism homeostasis under physiological and pathological conditions.


Assuntos
Caveolina 1/metabolismo , Metabolismo Energético/fisiologia , Glucose/metabolismo , Regeneração Hepática/fisiologia , Análise de Variância , Animais , Análise Química do Sangue , Proliferação de Células , Cromatografia em Camada Fina/métodos , Desoxiglucose/farmacologia , Modelos Animais de Doenças , Feminino , Hepatectomia , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Homeostase , Metabolismo dos Lipídeos/fisiologia , Regeneração Hepática/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade
9.
Biochem J ; 444(2): 323-31, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22428544

RESUMO

CARM1 (co-activator-associated arginine methyltransferase 1)/PRMT4 (protein arginine methyltransferase 4), functions as a co-activator for transcription factors that are regulators of muscle fibre type and oxidative metabolism, including PGC (peroxisome-proliferator-activated receptor γ co-activator)-1α and MEF2 (myocyte enhancer factor 2). We observed significantly higher Prmt4 mRNA expression in comparison with Prmt1-Prmt6 mRNA expression in mouse muscle (in vitro and in vivo). Transfection of Prmt4 siRNA (small interfering RNA) into mouse skeletal muscle C2C12 cells attenuated PRMT4 mRNA and protein expression. We subsequently performed additional qPCR (quantitative PCR) analysis (in the context of metabolism) to examine the effect of Prmt4 siRNA expression on >200 critical genes that control (and are involved in) lipid, glucose and energy homoeostasis, and circadian rhythm. This analysis revealed a strikingly specific metabolic expression footprint, and revealed that PRMT4 is necessary for the expression of genes involved in glycogen metabolism in skeletal muscle cells. Prmt4 siRNA expression selectively suppressed the mRNAs encoding Gys1 (glycogen synthase 1), Pgam2 (muscle phosphoglycerate mutase 2) and Pygm (muscle glycogen phosphorylase). Significantly, PGAM, PYGM and GYS1 deficiency in humans causes glycogen storage diseases type X, type V/McArdle's disease and type 0 respectively. Attenuation of PRMT4 was also associated with decreased expression of the mRNAs encoding AMPK (AMP-activated protein kinase) α2/γ3 (Prkaa2 and Prkag3) and p38 MAPK (mitogen-activated protein kinase), previously implicated in Wolff-Parkinson-White syndrome and Pompe Disease (glycogen storage disease type II). Furthermore, stable transfection of two PRMT4-site-specific (methyltransferase deficient) mutants (CARM1/PRMT4 VLD and CARM1E267Q) significantly repressed the expression of Gys1, Pgam2 and AMPKγ3. Finally, in concordance, we observed increased and decreased glycogen levels in PRMT4 (native)- and VLD (methylation deficient mutant)-transfected skeletal muscle cells respectively. This demonstrated that PRMT4 expression and the associated methyltransferase activity is necessary for the gene expression programme involved in glycogen metabolism and human glycogen storage diseases.


Assuntos
Regulação da Expressão Gênica/genética , Glicogênio/biossíntese , Glicogênio/genética , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Proteína-Arginina N-Metiltransferases/fisiologia , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteína-Arginina N-Metiltransferases/biossíntese , Proteína-Arginina N-Metiltransferases/genética
10.
Physiol Genomics ; 43(4): 213-27, 2011 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21119012

RESUMO

We demonstrate that chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) mRNA is more abundantly expressed (than COUP-TFI mRNA) in skeletal muscle C2C12 cells and in (type I and II) skeletal muscle tissue from C57BL/10 mice. Consequently, we have utilized the ABI TaqMan Low Density Array (TLDA) platform to analyze gene expression changes specifically attributable to ectopic COUP-TFII (relative to vector only) expression in muscle cells. Utilizing a TLDA-based platform and 5 internal controls, we analyze the entire NR superfamily, 96 critical metabolic genes, and 48 important myogenic regulatory genes on the TLDA platform utilizing 5 internal controls. The low density arrays were analyzed by rigorous statistical analysis (with Genorm normalization, Bioconductor R, and the Empirical Bayes statistic) using the (integromics) statminer software. In addition, we validated the differentially expressed patho-physiologically relevant gene (identified on the TLDA platform) glucose transporter type 4 (Glut4). We demonstrated that COUP-TFII expression increased the steady state levels of Glut4 mRNA and protein, while ectopic expression of truncated COUP-TFII lacking helix 12 (COUP-TFΔH12) reduced Glut4 mRNA expression in C2C12 cells. Moreover, COUP-TFII expression trans-activated the Glut4 promoter (-997/+3), and ChIP analysis identified selective recruitment of COUP-TFII to a region encompassing a highly conserved SP1 binding site (in mouse, rat, and human) at nt positions -131/-118. Mutation of the SpI site ablated COUP-TFII mediated trans-activation of the Glut4 promoter. In conclusion, this study demonstrates that in skeletal muscle cells, COUP-TFII regulates several nuclear hormone receptors, and critical metabolic and muscle specific genes.


Assuntos
Fator II de Transcrição COUP/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Musculares/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/citologia , Animais , Fator II de Transcrição COUP/genética , Linhagem Celular , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Humanos , Masculino , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ativação Transcricional/genética
11.
Biochem Biophys Res Commun ; 388(4): 654-9, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19682428

RESUMO

The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demonstrated that exogenous expression of Rev-erb betaDeltaE in skeletal muscle cells increased Srebp-1c mRNA expression. We validated these in vitro observations by injection of an expression vector driving Rev-erb betaDeltaE expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Paradoxically, Rev-erb beta siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indicated that Rev-erb beta expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that Rev-erb beta was recruited to the Srebp-1c promoter. Moreover, Rev-erb beta trans-activated the Srebp-1c promoter, in contrast, Rev-erb beta efficiently repressed the Rev-erb alpha promoter, a previously characterized target gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the Srebp-1c promoter by Rev-erb beta; and (ii) increased Rev-erb beta and Srebp-1c mRNA expression. These data suggest that Rev-erb beta has the potential to activate gene expression, and is a positive regulator of Srebp-1c, a regulator of lipogenesis.


Assuntos
Músculo Esquelético/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Ativação Transcricional , Animais , Sequência de Bases , Linhagem Celular , Eletroporação , Hemina/farmacologia , Membro Posterior , Lipogênese/genética , Camundongos , Dados de Sequência Molecular , Músculo Esquelético/citologia , Regiões Promotoras Genéticas/efeitos dos fármacos , RNA Mensageiro/biossíntese , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/agonistas , Proteínas Repressoras/genética
12.
J Mol Endocrinol ; 62(3): R223-R237, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30620710

RESUMO

Breast cancer is a heterogeneous disease, and the complexity of breast carcinogenesis is associated with epigenetic modification. There are several major classes of epigenetic enzymes that regulate chromatin activity. This review will focus on the nine mammalian protein arginine methyltransferases (PRMTs) and the dysregulation of PRMT expression and function in breast cancer. This class of enzymes catalyse the mono- and (symmetric and asymmetric) di-methylation of arginine residues on histone and non-histone target proteins. PRMT signalling (and R methylation) drives cellular proliferation, cell invasion and metastasis, targeting (i) nuclear hormone receptor signalling, (ii) tumour suppressors, (iii) TGF-ß and EMT signalling and (iv) alternative splicing and DNA/chromatin stability, influencing the clinical and survival outcomes in breast cancer. Emerging reports suggest that PRMTs are also implicated in the development of drug/endocrine resistance providing another prospective avenue for the treatment of hormone resistance and associated metastasis. The complexity of PRMT signalling is further underscored by the degree of alternative splicing and the scope of variant isoforms (with distinct properties) within each PRMT family member. The evolution of PRMT inhibitors, and the ongoing clinical trials of PRMT inhibitors against a subgroup of solid cancers, coupled to the track record of lysine methyltransferases inhibitors in phase I/II clinical trials against cancer underscores the potential therapeutic utility of targeting PRMT epigenetic enzymes to improve survival outcomes in aggressive and metastatic breast cancer.


Assuntos
Arginina/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Epigênese Genética/genética , Animais , Feminino , Humanos , Metilação
13.
Dev Cell ; 49(2): 279-292.e5, 2019 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-31014480

RESUMO

The correct assignment of cell fate within fields of multipotent progenitors is essential for accurate tissue diversification. The first lymphatic vessels arise from pre-existing veins after venous endothelial cells become specified as lymphatic progenitors. Prox1 specifies lymphatic fate and labels these progenitors; however, the mechanisms restricting Prox1 expression and limiting the progenitor pool remain unknown. We identified a zebrafish mutant that displayed premature, expanded, and prolonged lymphatic specification. The gene responsible encodes the regulator of alternative splicing, Nova2. In zebrafish and human endothelial cells, Nova2 selectively regulates pre-mRNA splicing for components of signaling pathways and phosphoproteins. Nova2-deficient endothelial cells display increased Mapk/Erk signaling, and Prox1 expression is dynamically controlled by Erk signaling. We identify a mechanism whereby Nova2-regulated splicing constrains Erk signaling, thus limiting lymphatic progenitor cell specification. This identifies the capacity of a factor that tunes mRNA splicing to control assignment of cell fate during vascular differentiation.


Assuntos
Vasos Linfáticos/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , Animais , Diferenciação Celular , Linhagem da Célula , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Linfangiogênese , Vasos Linfáticos/citologia , Masculino , Antígeno Neuro-Oncológico Ventral , Proteínas Supressoras de Tumor/metabolismo , Veias/citologia , Veias/metabolismo , Peixe-Zebra
14.
Endocrinology ; 149(6): 2853-65, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18325999

RESUMO

beta 1-3-Adrenoreceptor (AR)-deficient mice are unable to regulate energy expenditure and develop diet-induced obesity on a high-fat diet. We determined previously that beta2-AR agonist treatment activated expression of the mRNA encoding the orphan nuclear receptor, NOR-1, in muscle cells and plantaris muscle. Here we show that beta2-AR agonist treatment significantly and transiently activated the expression of NOR-1 (and the other members of the NR4A subgroup) in slow-twitch oxidative soleus muscle and fast-twitch glycolytic tibialis anterior muscle. The activation induced by beta-adrenergic signaling is consistent with the involvement of protein kinase A, MAPK, and phosphorylation of cAMP response element-binding protein. Stable cell lines transfected with a silent interfering RNA targeting NOR-1 displayed decreased palmitate oxidation and lactate accumulation. In concordance with these observations, ATP production in the NOR-1 silent interfering RNA (but not control)-transfected cells was resistant to (azide-mediated) inhibition of oxidative metabolism and expressed significantly higher levels of hypoxia inducible factor-1alpha. In addition, we observed the repression of genes that promote fatty acid oxidation (peroxisomal proliferator-activated receptor-gamma coactivator-1alpha/beta and lipin-1alpha) and trichloroacetic acid cycle-mediated carbohydrate (pyruvate) oxidation [pyruvate dehydrogenase phosphatase 1 regulatory and catalytic subunits (pyruvate dehydrogenase phosphatases-1r and -c)]. Furthermore, we observed that beta2-AR agonist administration in mouse skeletal muscle induced the expression of genes that activate fatty acid oxidation and modulate pyruvate use, including PGC-1alpha, lipin-1alpha, FOXO1, and PDK4. Finally, we demonstrate that NOR-1 is recruited to the lipin-1alpha and PDK-4 promoters, and this is consistent with NOR-1-mediated regulation of these genes. In conclusion, NOR-1 is necessary for oxidative metabolism in skeletal muscle.


Assuntos
Proteínas de Ligação a DNA/genética , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/genética , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Agonistas Adrenérgicos beta/farmacologia , Animais , Linhagem Celular , Etanolaminas/farmacologia , Fumarato de Formoterol , Camundongos , Músculo Esquelético/efeitos dos fármacos , Oxirredução , Consumo de Oxigênio , Ácido Palmítico/metabolismo , Plasmídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Transfecção
15.
Diabetes ; 55(9): 2523-33, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16936200

RESUMO

Halofenate has been shown previously to lower triglycerides in dyslipidemic subjects. In addition, significant decreases in fasting plasma glucose were observed but only in type 2 diabetic patients. We hypothesized that halofenate might be an insulin sensitizer, and we present data to suggest that halofenate is a selective peroxisome proliferator-activated receptor (PPAR)-gamma modulator (SPPARgammaM). We demonstrate that the circulating form of halofenate, halofenic acid (HA), binds to and selectively modulates PPAR-gamma. Reporter assays show that HA is a partial PPAR-gamma agonist, which can antagonize the activity of the full agonist rosiglitazone. The data suggest that the partial agonism of HA may be explained in part by effective displacement of corepressors (N-CoR and SMRT) coupled with inefficient recruitment of coactivators (p300, CBP, and TRAP 220). In human preadipocytes, HA displays weak adipogenic activity and antagonizes rosiglitazone-mediated adipogenic differentiation. Moreover, in 3T3-L1 adipocytes, HA selectively modulates the expression of multiple PPAR-gamma-responsive genes. Studies in the diabetic ob/ob mouse demonstrate halofenate's acute antidiabetic properties. Longer-term studies in the obese Zucker (fa/fa) rat demonstrate halofenate's comparable insulin sensitization to rosiglitazone in the absence of body weight increases. Our data establish halofenate as a novel SPPARgammaM with promising therapeutic utility with the potential for less weight gain.


Assuntos
Halofenato/farmacologia , Hipoglicemiantes/uso terapêutico , PPAR gama/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Diabetes Mellitus/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Resistência à Insulina , Ligantes , Camundongos , Camundongos Obesos , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , Estrutura Terciária de Proteína , Ratos , Ratos Zucker , Rosiglitazona , Tiazolidinedionas/farmacologia , Técnicas do Sistema de Duplo-Híbrido
16.
Endocrinology ; 158(3): 431-447, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27983866

RESUMO

Breast cancer is a heterogeneous disease and its complexity has hindered the development of efficacious treatments targeting all breast cancer subtypes. Many studies have linked the diversity of breast carcinogenesis and metastasis to aberrant epigenetic signaling and control. Here, we focus on the current state of the discipline and review the major epigenetic enzymes controlling chromatin structure and function in the context of breast cancer, including (1) DNA methyltransferases, (2) lysine methyltransferases and demethylases, (3) protein arginine methyltransferases, and (4) histone acetyltransferases and deacetylases. Moreover, therapeutic drugs targeting these epigenetic enzymes are rapidly emerging and/or undergoing clinical trials. Therefore, we discuss the pharmacological manipulation of epigenetic enzymes for breast cancer treatment and present new clinical and survival outcome analysis on epigenetic factors that have evaded analysis to date. Understanding and pharmacologically exploiting epigenetic regulation in breast cancer promises to be an essential aspect of next-generation drug development and adjuvant therapies targeting advanced disease and treatment-resistant tumors.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Epigênese Genética , Animais , Carcinogênese , Metilases de Modificação do DNA/metabolismo , Feminino , Histona Desacetilases/metabolismo , Histona Desmetilases/metabolismo , Humanos , Lisina Acetiltransferases/metabolismo
17.
EBioMedicine ; 16: 63-75, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28119061

RESUMO

While invasion and metastasis of tumour cells are the principle factor responsible for cancer related deaths, the mechanisms governing the process remain poorly defined. Moreover, phenotypic divergence of sub-populations of tumour cells is known to underpin alternative behaviors linked to tumour progression such as proliferation, survival and invasion. In the context of melanoma, heterogeneity between two transcription factors, BRN2 and MITF, has been associated with phenotypic switching between predominantly invasive and proliferative behaviors respectively. Epigenetic changes, in response to external cues, have been proposed to underpin this process, however the mechanism by which the phenotypic switch occurs is unclear. Here we report the identification of the NFIB transcription factor as a novel downstream effector of BRN2 function in melanoma cells linked to the migratory and invasive characteristics of these cells. Furthermore, the function of NFIB appears to drive an invasive phenotype through an epigenetic mechanism achieved via the upregulation of the polycomb group protein EZH2. A notable target of NFIB mediated up-regulation of EZH2 is decreased MITF expression, which further promotes a less proliferative, more invasive phenotype. Together our data reveal that NFIB has the ability to promote dynamic changes in the chromatin state of melanoma cells to facilitate migration, invasion and metastasis.


Assuntos
Movimento Celular/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteínas de Homeodomínio/genética , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Fatores de Transcrição NFI/genética , Fatores do Domínio POU/genética , Animais , Western Blotting , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Melanoma/metabolismo , Melanoma/patologia , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fator de Transcrição Associado à Microftalmia/metabolismo , Microscopia de Fluorescência , Fatores de Transcrição NFI/metabolismo , Invasividade Neoplásica , Fatores do Domínio POU/metabolismo , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo
18.
Endocrinology ; 147(11): 5217-27, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16901967

RESUMO

beta-Adrenergic receptor (beta-AR) agonists induce Nur77 mRNA expression in the C2C12 skeletal muscle cell culture model and elicit skeletal muscle hypertrophy. We previously demonstrated that Nur77 (NR4A1) is involved in lipolysis and gene expression associated with the regulation of lipid homeostasis. Subsequently it was demonstrated by another group that beta-AR agonists and cold exposure-induced Nur77 expression in brown adipocytes and brown adipose tissue, respectively. Moreover, NOR-1 (NR4A3) was hyperinduced by cold exposure in the nur77(-/-) animal model. These studies underscored the importance of understanding the role of NOR-1 in skeletal muscle. In this context we observed 30-480 min of beta-AR agonist treatment significantly and transiently increased expression of the orphan nuclear receptor NOR-1 in both mouse skeletal muscle tissue (plantaris) and C2C12 skeletal muscle cells. Specific beta(2)- and beta(3)-AR agonists had similar effects as the pan-agonist and were blocked by the beta-AR antagonist propranolol. Moreover, in agreement with these observations, isoprenaline also significantly increased the activity of the NOR-1 promoter. Stable exogenous expression of a NOR-1 small interfering RNA (but not the negative control small interfering RNA) in skeletal muscle cells significantly repressed endogenous NOR-1 mRNA expression and led to changes in the expression of genes involved in the control of lipid use and muscle mass underscored by a dramatic increase in myostatin mRNA expression. Concordantly the myostatin promoter was repressed by NOR-1 expression. In conclusion, NOR-1 is highly responsive to beta-adrenergic signaling and regulates the expression of genes controlling fatty acid use and muscle mass.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Receptores Adrenérgicos beta/fisiologia , Receptores de Esteroides/fisiologia , Receptores dos Hormônios Tireóideos/fisiologia , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Proteínas de Ligação a DNA/genética , Homeostase , Canais Iônicos/fisiologia , Isoproterenol/farmacologia , Metabolismo dos Lipídeos , Camundongos , Proteínas Mitocondriais/fisiologia , Desenvolvimento Muscular , Músculo Esquelético/citologia , Miostatina , Proteínas do Tecido Nervoso/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Regiões Promotoras Genéticas , RNA Mensageiro/análise , RNA Interferente Pequeno/farmacologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Fatores de Transcrição/fisiologia , Fator de Crescimento Transformador beta/genética , Proteína Desacopladora 2 , Proteína Desacopladora 3
19.
EBioMedicine ; 11: 101-117, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27568222

RESUMO

RORα is a member of the nuclear receptor (NR) superfamily and analysis of the (global) RORα-deficient mouse model revealed this NR has a role in glycemic control and fat deposition. Therefore, we generated an adipose-specific RORα 'gain of function' mouse model under the control of the fatty acid binding protein 4 (FABP4) promoter to elucidate the function of RORα in adipose tissue. The Tg-FABP4-RORα4 mice demonstrated a shift in fat distribution to non-adipose tissues when challenged with a high fat diet (HFD). Specifically, we observed a subcutaneous lipodystrophy, accompanied by hepatomegaly (fatty liver/mild portal fibrosis) and splenomegaly; in a background of decreased weight gain and total body fat after HFD. Moreover, we observed significantly higher fasting blood glucose and impaired clearance of glucose in Tg-FABP4-RORα4 mice. Genome wide expression and qPCR profiling analysis identified: (i) subcutaneous adipose specific decreases in the expression of genes involved in fatty acid biosynthesis, lipid droplet expansion and glycemic control, and (ii) the fibrosis pathway as the most significant pathway [including dysregulation of the collagen/extracellular matrix (ECM) pathways] in subcutaneous adipose and liver. The pathology presented in the Tg-FABP4-RORα4 mice is reminiscent of human metabolic disease (associated with aberrant ECM expression) highlighting the therapeutic potential of this NR.


Assuntos
Tecido Adiposo/metabolismo , Adiposidade/genética , Glicemia , Expressão Gênica , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Adiposidade/imunologia , Animais , Biomarcadores , Análise por Conglomerados , Matriz Extracelular/metabolismo , Fibrose , Perfilação da Expressão Gênica , Genótipo , Teste de Tolerância a Glucose , Hepatomegalia/genética , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos , Lipídeos/sangue , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Fenótipo , Esplenomegalia/genética , Esplenomegalia/metabolismo , Esplenomegalia/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transgenes , Aumento de Peso
20.
PLoS One ; 11(1): e0147179, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26812621

RESUMO

Nuclear hormone receptors have important roles in the regulation of metabolic and inflammatory pathways. The retinoid-related orphan receptor alpha (Rorα)-deficient staggerer (sg/sg) mice display several phenotypes indicative of aberrant lipid metabolism, including dyslipidemia, and increased susceptibility to atherosclerosis. In this study we demonstrate that macrophages from sg/sg mice have increased ability to accumulate lipids and accordingly exhibit larger lipid droplets (LD). We have previously shown that BMMs from sg/sg mice have significantly decreased expression of cholesterol 25-hydroxylase (Ch25h) mRNA, the enzyme that produces the oxysterol, 25-hydroxycholesterol (25HC), and now confirm this at the protein level. 25HC functions as an inverse agonist for RORα. siRNA knockdown of Ch25h in macrophages up-regulates Vldlr mRNA expression and causes increased accumulation of LDs. Treatment with physiological concentrations of 25HC in sg/sg macrophages restored lipid accumulation back to normal levels. Thus, 25HC and RORα signify a new pathway involved in the regulation of lipid homeostasis in macrophages, potentially via increased uptake of lipid which is suggested by mRNA expression changes in Vldlr and other related genes.


Assuntos
Hidroxicolesteróis/metabolismo , Gotículas Lipídicas/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Cromatografia em Camada Fina , Agonismo Inverso de Drogas , Metabolismo dos Lipídeos , Lipídeos/análise , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/química , Interferência de RNA , RNA Mensageiro/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Esteroide Hidroxilases/antagonistas & inibidores , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA