Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fluoresc ; 32(1): 307-318, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34787776

RESUMO

Coumarins are bioactive molecules that often serve as defenses in plant and animal systems, and understanding their fundamental behavior is essential for understanding their bioactivity. Aesculetin (6,7-dihydroxycoumarin) has recently attracted attention due to its ability to act as an antioxidant, but little is known about its photophysical properties. The fluorescence lifetimes of its neutral and anion form in water are 19 ± 2 ps and 2.3 ± 0.1 ns, respectively. Assuming the short lifetime of the neutral is determined by ESPT, we estimate kPT ~ 5 × 1010 s-1. Using steady-state and time-resolved fluorescence spectroscopy, we determine its ground and excited-state [Formula: see text] to be 7.3 and -1, respectively, making it one of the strongest photoacids of the natural coumarins. Aesculetin exhibits a strong pH dependence of the relative fluorescence quantum yield becoming much more fluorescent above [Formula: see text]. The aesculetin anion [Formula: see text] slightly photobasic character. We also report that aesculetin forms a fluorescent catechol-like complex with boric acid, and this complex has a [Formula: see text] of 5.6.


Assuntos
Fluorescência , Espectrometria de Fluorescência/métodos , Umbeliferonas , Ácidos Bóricos/química , Cumarínicos , Concentração de Íons de Hidrogênio , Processos Fotoquímicos , Umbeliferonas/química , Água/química
2.
J Fluoresc ; 30(1): 71-80, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31872306

RESUMO

Scopoletin is highly fluorescent in water and acts as a photoacid exhibiting excited-state proton transfer, ESPT, competitive with fluorescence. Its absorbance and emission spectral characteristics yield ground-state and excited-state pKa values of 7.4 ± 0.1 and 1.4 ± 0.1, respectively. The pKa* implies an ESPT rate constant an order of magnitude smaller than that for umbelliferone. This report provides quantum yield measurements in water that are comparable to quinine sulfate, and fluorescence lifetime values that are on a par with other similar coumarins yet provide insight into the ESPT process. The scopoletin anion is observed in tetrahydrofuran by reaction with a strong base. The Stokes shift of aqueous scopoletin is >100 nm in the pH range 3 to 7 due in part to its action as a photoacid. Modeling by density functional theory methods provides reasonable support for the experimental results.

3.
J Phys Chem A ; 124(48): 9942-9950, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33201700

RESUMO

We report cryogenic vibrational spectra of gas-phase cations of two common hydroxycoumarins, scopoletin and esculetin, as well as their glycosidic derivatives, scopolin and esculin. The study allows direct observation of the intramolecular interactions between the hydroxyl groups of these molecules. We use cryogenic messenger-tagging IR action spectroscopy to detect vibrational bands in the 3100-3800 cm-1 spectral range and discuss the corresponding structural characteristics and hydrogen bonding networks that they imply. The experimental data are supported by a thorough computational evaluation, including investigation of the conformational space. Through comparison of the calculated conformers with the experimental results, we identify the main types of OH oscillators and infer how protonation and sodiation affect the structural arrangement of these molecules. The results presented here provide direct evidence of how slight structural differences sensitively affect the hydrogen bonding network in coumarin derivatives.


Assuntos
Cumarínicos/química , Cátions/química , Teoria da Densidade Funcional , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Espectrofotometria Infravermelho
4.
J Phys Chem A ; 116(50): 12305-13, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23176295

RESUMO

The photochemistry of gas-phase 1,1,1-trifluoroacetylacetone (TFAA) excited with ultraviolet (UV) light involves a significant photoelimination channel that produces hydrogen fluoride and a fluorinated methylfuranone, 2,2-difluoro-5-methyl-3(2H)-furanone (2FMF). This pathway is remarkable because it is a gas-phase unimolecular reaction that forms a five-membered ring product. This report is the first of such a TFAA photoelimination channel, which is similar to one observed with 1,1,1,5,5,5-hexafluoroacetylacetone (HFAA), resulting in 2,2-difluoro-5-trifluoromethyl-3(2H)-furanone. We present infrared spectral observations of 2FMF produced by pulsed, UV-laser excitation of TFAA, along with analogous results from HFAA, supported by density functional theory (DFT) computational studies. DFT results for the infrared spectrum of 5-methyl-3(2H)-furanone, the expected comparable acetylacetone photoelimination product, help suggest that UV excitation of acetylacetone fails to follow a similar type of photoelimination. We use a weighted RMS approach as a figure of merit for comparing calculated infrared frequencies with experimental data. Results from the three acetylacetones reveal how the presence of fluorine atoms in acetylacetone influences the gas-phase molecular photochemistry.


Assuntos
Furanos/química , Halogenação , Pentanonas/química , Processos Fotoquímicos , Raios Ultravioleta , Teoria Quântica , Espectrofotometria Infravermelho
5.
J Phys Chem A ; 111(51): 13330-8, 2007 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-18047304

RESUMO

The quantum yield for HCN formation via 248 nm photodissociation of 2,3-, 2,5-, and 2,6-dimethylpyrazine (DMP, C6N2H8) was measured using diode laser probing of the HCN photoproduct. The total quantum yield is phi = 0.039 +/- 0.07, 0.14 +/- 0.02, and 0.30 +/- 0.06 for 248 nm excitation of 2,3-, 2,5- and 2,6-DMP, respectively. Analysis of the quenching data within the context of a gas kinetic, strong collision model allows an estimate of the rate constant for HCN production via DMP photodissociation, ks = 4.1 x 10(3), 1.0 x 10(3), and 1.3 x 10(4) s(-1) for 2,3-, 2,5- and 2,6-DMP, respectively. Unlike HCN produced from the photodissociation of pyrazine and methylpyrazine, the amount of HCN produced via a prompt, unquenched dissociation channel was essentially zero, suggesting little multiphoton UV absorption. The rate constants for HCN formation together with previously measured rate constants for HCN production from photodissociation of pyrazine and methylpyrazine have been used to investigate possible reaction mechanisms. The position of the methyl group affects the HCN rate constant, suggesting that the mechanism for pyrazine dissociation involves an initial step that is hindered by the addition of the methyl groups. The proposed initial molecular motion of the mechanism, an out-of-plane H atom migration across a N atom, is consistent with (1) the position of the methyl groups, (2) the dissociation lifetime of the various pyrazine molecules studied, and (3) the observed large energy transfer magnitudes from pyrazine near dissociation. These so-called "supercollisions" have been linked to low-frequency, out-of-plane motion, suggesting that the molecular motions leading to efficient energy transfer are the same motions involved in dissociation. In addition, the pyrazine (C4N2H4) 248 nm photoproduct (C3H3N) was identified as acrylonitrile using IR spectroscopy, an observation that aids in understanding the dissociation mechanism.


Assuntos
Transferência de Energia/efeitos da radiação , Pirazinas/química , Pirazinas/efeitos da radiação , Raios Ultravioleta , Acrilonitrila/química , Lasers Semicondutores , Fotoquímica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA