Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Toxicol Pathol ; 37(2): 45-53, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584971

RESUMO

The United States Senate passed the "FDA Modernization Act 2.0." on September 29, 2022. Although the effectiveness of this Bill, which aims to eliminate the mandatory use of laboratory animals in new drug development, is limited, it represents a significant trend that will change the shape of drug applications in the United States and other countries. However, pharmaceutical companies have not taken major steps towards the complete elimination of animal testing from the standpoint of product safety, where they prioritize patient safety. Nonetheless, society is becoming increasingly opposed to animal testing, and efforts will be made to use fewer animals and conduct fewer animal tests as a natural and reasonable response. These changes eventually alter the shape of new drug applications. Based on the assumption that fewer animal tests will be conducted or fewer animals will be used in testing, this study explored bioinformatics and new technologies as alternatives to compensate for reduced information and provide a picture of how future new drug applications may look. The authors also discuss the directions that pharmaceutical companies and nonclinical contract research organizations should adopt to promote the replacement, reduction, and refinement of animals used in research, teaching, testing, and exhibitions.

2.
Regul Toxicol Pharmacol ; 120: 104843, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33340644

RESUMO

This study assesses whether currently available acute oral toxicity (AOT) in silico models, provided by the widely employed Leadscope software, are fit-for-purpose for categorization and labelling of chemicals. As part of this study, a large data set of proprietary and marketed compounds from multiple companies (pharmaceutical, plant protection products, and other chemical industries) was assembled to assess the models' performance. The absolute percentage of correct or more conservative predictions, based on a comparison of experimental and predicted GHS categories, was approximately 95%, after excluding a small percentage of inconclusive (indeterminate or out of domain) predictions. Since the frequency distribution across the experimental categories is skewed towards low toxicity chemicals, a balanced assessment was also performed. Across all compounds which could be assigned to a well-defined experimental category, the average percentage of correct or more conservative predictions was around 80%. These results indicate the potential for reliable and broad application of these models across different industrial sectors. This manuscript describes the evaluation of these models, highlights the importance of an expert review, and provides guidance on the use of AOT models to fulfill testing requirements, GHS classification/labelling, and transportation needs.


Assuntos
Simulação por Computador , Citotoxinas/toxicidade , Colaboração Intersetorial , Rotulagem de Produtos/classificação , Rotulagem de Produtos/normas , Relação Quantitativa Estrutura-Atividade , Administração Oral , Alternativas aos Testes com Animais/classificação , Alternativas aos Testes com Animais/métodos , Alternativas aos Testes com Animais/normas , Animais , Indústria Química/classificação , Indústria Química/normas , Simulação por Computador/tendências , Citotoxinas/administração & dosagem , Citotoxinas/química , Bases de Dados Factuais , Indústria Farmacêutica/classificação , Indústria Farmacêutica/normas , Humanos
3.
Mutagenesis ; 34(1): 67-82, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30189015

RESUMO

(Quantitative) structure-activity relationship or (Q)SAR predictions of DNA-reactive mutagenicity are important to support both the design of new chemicals and the assessment of impurities, degradants, metabolites, extractables and leachables, as well as existing chemicals. Aromatic N-oxides represent a class of compounds that are often considered alerting for mutagenicity yet the scientific rationale of this structural alert is not clear and has been questioned. Because aromatic N-oxide-containing compounds may be encountered as impurities, degradants and metabolites, it is important to accurately predict mutagenicity of this chemical class. This article analysed a series of publicly available aromatic N-oxide data in search of supporting information. The article also used a previously developed structure-activity relationship (SAR) fingerprint methodology where a series of aromatic N-oxide substructures was generated and matched against public and proprietary databases, including pharmaceutical data. An assessment of the number of mutagenic and non-mutagenic compounds matching each substructure across all sources was used to understand whether the general class or any specific subclasses appear to lead to mutagenicity. This analysis resulted in a downgrade of the general aromatic N-oxide alert. However, it was determined there were enough public and proprietary data to assign the quindioxin and related chemicals as well as benzo[c][1,2,5]oxadiazole 1-oxide subclasses as alerts. The overall results of this analysis were incorporated into Leadscope's expert-rule-based model to enhance its predictive accuracy.


Assuntos
Óxidos N-Cíclicos/química , Dano ao DNA/efeitos dos fármacos , Mutagênicos/química , Relação Quantitativa Estrutura-Atividade , Óxidos N-Cíclicos/toxicidade , Mutagênese/efeitos dos fármacos , Testes de Mutagenicidade , Mutagênicos/toxicidade
4.
Mutagenesis ; 34(1): 3-16, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30357358

RESUMO

The International Conference on Harmonization (ICH) M7 guideline allows the use of in silico approaches for predicting Ames mutagenicity for the initial assessment of impurities in pharmaceuticals. This is the first international guideline that addresses the use of quantitative structure-activity relationship (QSAR) models in lieu of actual toxicological studies for human health assessment. Therefore, QSAR models for Ames mutagenicity now require higher predictive power for identifying mutagenic chemicals. To increase the predictive power of QSAR models, larger experimental datasets from reliable sources are required. The Division of Genetics and Mutagenesis, National Institute of Health Sciences (DGM/NIHS) of Japan recently established a unique proprietary Ames mutagenicity database containing 12140 new chemicals that have not been previously used for developing QSAR models. The DGM/NIHS provided this Ames database to QSAR vendors to validate and improve their QSAR tools. The Ames/QSAR International Challenge Project was initiated in 2014 with 12 QSAR vendors testing 17 QSAR tools against these compounds in three phases. We now present the final results. All tools were considerably improved by participation in this project. Most tools achieved >50% sensitivity (positive prediction among all Ames positives) and predictive power (accuracy) was as high as 80%, almost equivalent to the inter-laboratory reproducibility of Ames tests. To further increase the predictive power of QSAR tools, accumulation of additional Ames test data is required as well as re-evaluation of some previous Ames test results. Indeed, some Ames-positive or Ames-negative chemicals may have previously been incorrectly classified because of methodological weakness, resulting in false-positive or false-negative predictions by QSAR tools. These incorrect data hamper prediction and are a source of noise in the development of QSAR models. It is thus essential to establish a large benchmark database consisting only of well-validated Ames test results to build more accurate QSAR models.


Assuntos
Mutagênese/efeitos dos fármacos , Mutagênicos/toxicidade , Relação Quantitativa Estrutura-Atividade , Simulação por Computador , Bases de Dados Factuais , Humanos , Japão , Testes de Mutagenicidade
5.
Regul Toxicol Pharmacol ; 102: 53-64, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30562600

RESUMO

The International Council for Harmonization (ICH) M7 guideline describes a hazard assessment process for impurities that have the potential to be present in a drug substance or drug product. In the absence of adequate experimental bacterial mutagenicity data, (Q)SAR analysis may be used as a test to predict impurities' DNA reactive (mutagenic) potential. However, in certain situations, (Q)SAR software is unable to generate a positive or negative prediction either because of conflicting information or because the impurity is outside the applicability domain of the model. Such results present challenges in generating an overall mutagenicity prediction and highlight the importance of performing a thorough expert review. The following paper reviews pharmaceutical and regulatory experiences handling such situations. The paper also presents an analysis of proprietary data to help understand the likelihood of misclassifying a mutagenic impurity as non-mutagenic based on different combinations of (Q)SAR results. This information may be taken into consideration when supporting the (Q)SAR results with an expert review, especially when out-of-domain results are generated during a (Q)SAR evaluation.


Assuntos
Contaminação de Medicamentos , Guias como Assunto , Mutagênicos/classificação , Relação Quantitativa Estrutura-Atividade , Indústria Farmacêutica , Órgãos Governamentais , Mutagênicos/toxicidade , Medição de Risco
6.
Regul Toxicol Pharmacol ; 96: 1-17, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29678766

RESUMO

The present publication surveys several applications of in silico (i.e., computational) toxicology approaches across different industries and institutions. It highlights the need to develop standardized protocols when conducting toxicity-related predictions. This contribution articulates the information needed for protocols to support in silico predictions for major toxicological endpoints of concern (e.g., genetic toxicity, carcinogenicity, acute toxicity, reproductive toxicity, developmental toxicity) across several industries and regulatory bodies. Such novel in silico toxicology (IST) protocols, when fully developed and implemented, will ensure in silico toxicological assessments are performed and evaluated in a consistent, reproducible, and well-documented manner across industries and regulatory bodies to support wider uptake and acceptance of the approaches. The development of IST protocols is an initiative developed through a collaboration among an international consortium to reflect the state-of-the-art in in silico toxicology for hazard identification and characterization. A general outline for describing the development of such protocols is included and it is based on in silico predictions and/or available experimental data for a defined series of relevant toxicological effects or mechanisms. The publication presents a novel approach for determining the reliability of in silico predictions alongside experimental data. In addition, we discuss how to determine the level of confidence in the assessment based on the relevance and reliability of the information.


Assuntos
Simulação por Computador , Testes de Toxicidade/métodos , Toxicologia/métodos , Animais , Humanos
9.
Regul Toxicol Pharmacol ; 77: 1-12, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26879463

RESUMO

Statistical-based and expert rule-based models built using public domain mutagenicity knowledge and data are routinely used for computational (Q)SAR assessments of pharmaceutical impurities in line with the approach recommended in the ICH M7 guideline. Knowledge from proprietary corporate mutagenicity databases could be used to increase the predictive performance for selected chemical classes as well as expand the applicability domain of these (Q)SAR models. This paper outlines a mechanism for sharing knowledge without the release of proprietary data. Primary aromatic amine mutagenicity was selected as a case study because this chemical class is often encountered in pharmaceutical impurity analysis and mutagenicity of aromatic amines is currently difficult to predict. As part of this analysis, a series of aromatic amine substructures were defined and the number of mutagenic and non-mutagenic examples for each chemical substructure calculated across a series of public and proprietary mutagenicity databases. This information was pooled across all sources to identify structural classes that activate or deactivate aromatic amine mutagenicity. This structure activity knowledge, in combination with newly released primary aromatic amine data, was incorporated into Leadscope's expert rule-based and statistical-based (Q)SAR models where increased predictive performance was demonstrated.


Assuntos
Aminas/toxicidade , Mineração de Dados/métodos , Bases de Conhecimento , Mutagênese , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Aminas/química , Aminas/classificação , Animais , Simulação por Computador , Bases de Dados Factuais , Humanos , Modelos Moleculares , Estrutura Molecular , Mutagênicos/química , Mutagênicos/classificação , Reconhecimento Automatizado de Padrão , Relação Quantitativa Estrutura-Atividade , Medição de Risco
10.
Regul Toxicol Pharmacol ; 77: 13-24, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26877192

RESUMO

The ICH M7 guideline describes a consistent approach to identify, categorize, and control DNA reactive, mutagenic, impurities in pharmaceutical products to limit the potential carcinogenic risk related to such impurities. This paper outlines a series of principles and procedures to consider when generating (Q)SAR assessments aligned with the ICH M7 guideline to be included in a regulatory submission. In the absence of adequate experimental data, the results from two complementary (Q)SAR methodologies may be combined to support an initial hazard classification. This may be followed by an assessment of additional information that serves as the basis for an expert review to support or refute the predictions. This paper elucidates scenarios where additional expert knowledge may be beneficial, what such an expert review may contain, and how the results and accompanying considerations may be documented. Furthermore, the use of these principles and procedures to yield a consistent and robust (Q)SAR-based argument to support impurity qualification for regulatory purposes is described in this manuscript.


Assuntos
Testes de Carcinogenicidade/métodos , Dano ao DNA , Mineração de Dados/métodos , Mutagênese , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Toxicologia/métodos , Animais , Testes de Carcinogenicidade/normas , Simulação por Computador , Bases de Dados Factuais , Fidelidade a Diretrizes , Guias como Assunto , Humanos , Modelos Moleculares , Estrutura Molecular , Testes de Mutagenicidade/normas , Mutagênicos/química , Mutagênicos/classificação , Formulação de Políticas , Relação Quantitativa Estrutura-Atividade , Medição de Risco , Toxicologia/legislação & jurisprudência , Toxicologia/normas
11.
Adv Exp Med Biol ; 856: 259-297, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27671727

RESUMO

Quality control of cell cultures used in new in vitro toxicology assays is crucial to the provision of reliable, reproducible and accurate toxicity data on new drugs or constituents of new consumer products. This chapter explores the key scientific and ethical criteria that must be addressed at the earliest stages of developing toxicology assays based on human pluripotent stem cell (hPSC) lines. It also identifies key considerations for such assays to be acceptable for regulatory, laboratory safety and commercial purposes. Also addressed is the development of hPSC-based assays for the tissue and cell types of greatest interest in drug toxicology. The chapter draws on a range of expert opinion within the European Commission/Cosmetics Europe-funded alternative testing cluster SEURAT-1 and consensus from international groups delivering this guidance such as the International Stem Cell Banking Initiative. Accordingly, the chapter summarizes the most up-date best practices in the use and quality control of human Pluripotent Stem Cell lines in the development of in vitro toxicity assays from leading experts in the field.


Assuntos
Técnicas In Vitro/normas , Células-Tronco Pluripotentes/citologia , Testes de Toxicidade/métodos , Diferenciação Celular , Proliferação de Células , Humanos , Controle de Qualidade
12.
Arch Toxicol ; 88(12): 2261-87, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25399406

RESUMO

A long-term goal of numerous research projects is to identify biomarkers for in vitro systems predicting toxicity in vivo. Often, transcriptomics data are used to identify candidates for further evaluation. However, a systematic directory summarizing key features of chemically influenced genes in human hepatocytes is not yet available. To bridge this gap, we used the Open TG-GATES database with Affymetrix files of cultivated human hepatocytes incubated with chemicals, further sets of gene array data with hepatocytes from human donors generated in this study, and publicly available genome-wide datasets of human liver tissue from patients with non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular cancer (HCC). After a curation procedure, expression data of 143 chemicals were included into a comprehensive biostatistical analysis. The results are summarized in the publicly available toxicotranscriptomics directory ( http://wiki.toxbank.net/toxicogenomics-map/ ) which provides information for all genes whether they are up- or downregulated by chemicals and, if yes, by which compounds. The directory also informs about the following key features of chemically influenced genes: (1) Stereotypical stress response. When chemicals induce strong expression alterations, this usually includes a complex but highly reproducible pattern named 'stereotypical response.' On the other hand, more specific expression responses exist that are induced only by individual compounds or small numbers of compounds. The directory differentiates if the gene is part of the stereotypical stress response or if it represents a more specific reaction. (2) Liver disease-associated genes. Approximately 20 % of the genes influenced by chemicals are up- or downregulated, also in liver disease. Liver disease genes deregulated in cirrhosis, HCC, and NASH that overlap with genes of the aforementioned stereotypical chemical stress response include CYP3A7, normally expressed in fetal liver; the phase II metabolizing enzyme SULT1C2; ALDH8A1, known to generate the ligand of RXR, one of the master regulators of gene expression in the liver; and several genes involved in normal liver functions: CPS1, PCK1, SLC2A2, CYP8B1, CYP4A11, ABCA8, and ADH4. (3) Unstable baseline genes. The process of isolating and the cultivation of hepatocytes was sufficient to induce some stress leading to alterations in the expression of genes, the so-called unstable baseline genes. (4) Biological function. Although more than 2,000 genes are transcriptionally influenced by chemicals, they can be assigned to a relatively small group of biological functions, including energy and lipid metabolism, inflammation and immune response, protein modification, endogenous and xenobiotic metabolism, cytoskeletal organization, stress response, and DNA repair. In conclusion, the introduced toxicotranscriptomics directory offers a basis for a rationale choice of candidate genes for biomarker evaluation studies and represents an easy to use source of background information on chemically influenced genes.


Assuntos
Bases de Dados Genéticas , Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatopatias/genética , Bibliotecas de Moléculas Pequenas/toxicidade , Toxicogenética/métodos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Análise de Componente Principal , Bibliotecas de Moléculas Pequenas/química , Toxicogenética/estatística & dados numéricos
13.
PDA J Pharm Sci Technol ; 78(3): 237-311, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942479

RESUMO

This article describes the development of a representative dataset of extractables and leachables (E&L) from the combined Extractables and Leachables Safety Information Exchange (ELSIE) Consortium and the Product Quality Research Institute (PQRI) published datasets, representing a total of 783 chemicals. A chemical structure-based clustering of the combined dataset identified 142 distinct chemical classes with two or more chemicals across the combined dataset. The majority of these classes (105 chemical classes out of 142) contained chemicals from both datasets, whereas 8 classes contained only chemicals from the ELSIE dataset and 29 classes contain only chemicals from the PQRI dataset. This evaluation also identified classes containing chemicals that were flagged as potentially mutagenic as well as potent (strong or extreme) dermal sensitizers by in silico tools. The prevalence of alerting structures in the E&L datasets was approximately 9% (69 examples) for mutagens and 3% (25 examples) for potent sensitizers. This analysis showed that most (80%; 20 of 25) E&L predicted to be strong or extreme dermal sensitizers were also flagged as potential mutagens. Only two chemical classes, each containing three chemicals (alkyl bromides and isothiocyanates), were uniquely identified in the PQRI dataset and contained chemicals predicted to be potential mutagens and/or potent dermal sensitizers.


Assuntos
Simulação por Computador , Mutagênicos , Medição de Risco/métodos , Mutagênicos/toxicidade , Humanos , Contaminação de Medicamentos/prevenção & controle , Preparações Farmacêuticas/química , Embalagem de Medicamentos/normas
14.
Front Toxicol ; 6: 1370045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646442

RESUMO

The ICH S1B carcinogenicity global testing guideline has been recently revised with a novel addendum that describes a comprehensive integrated Weight of Evidence (WoE) approach to determine the need for a 2-year rat carcinogenicity study. In the present work, experts from different organizations have joined efforts to standardize as much as possible a procedural framework for the integration of evidence associated with the different ICH S1B(R1) WoE criteria. The framework uses a pragmatic consensus procedure for carcinogenicity hazard assessment to facilitate transparent, consistent, and documented decision-making and it discusses best-practices both for the organization of studies and presentation of data in a format suitable for regulatory review. First, it is acknowledged that the six WoE factors described in the addendum form an integrated network of evidence within a holistic assessment framework that is used synergistically to analyze and explain safety signals. Second, the proposed standardized procedure builds upon different considerations related to the primary sources of evidence, mechanistic analysis, alternative methodologies and novel investigative approaches, metabolites, and reliability of the data and other acquired information. Each of the six WoE factors is described highlighting how they can contribute evidence for the overall WoE assessment. A suggested reporting format to summarize the cross-integration of evidence from the different WoE factors is also presented. This work also notes that even if a 2-year rat study is ultimately required, creating a WoE assessment is valuable in understanding the specific factors and levels of human carcinogenic risk better than have been identified previously with the 2-year rat bioassay alone.

15.
PDA J Pharm Sci Technol ; 78(3): 214-236, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942477

RESUMO

Leachables in pharmaceutical products may react with biomolecule active pharmaceutical ingredients (APIs), for example, monoclonal antibodies (mAb), peptides, and ribonucleic acids (RNA), potentially compromising product safety and efficacy or impacting quality attributes. This investigation explored a series of in silico models to screen extractables and leachables to assess their possible reactivity with biomolecules. These in silico models were applied to collections of known leachables to identify functional and structural chemical classes likely to be flagged by these in silico approaches. Flagged leachable functional classes included antimicrobials, colorants, and film-forming agents, whereas specific chemical classes included epoxides, acrylates, and quinones. In addition, a dataset of 22 leachables with experimental data indicating their interaction with insulin glargine was used to evaluate whether one or more in silico methods are fit-for-purpose as a preliminary screen for assessing this biomolecule reactivity. Analysis of the data showed that the sensitivity of an in silico screen using multiple methodologies was 80%-90% and the specificity was 58%-92%. A workflow supporting the use of in silico methods in this field is proposed based on both the results from this assessment and best practices in the field of computational modeling and quality risk management.


Assuntos
Simulação por Computador , Contaminação de Medicamentos , Contaminação de Medicamentos/prevenção & controle , Preparações Farmacêuticas/química , Preparações Farmacêuticas/análise , Anticorpos Monoclonais/química
16.
Methods Mol Biol ; 2425: 419-434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188641

RESUMO

In silico toxicology protocols help ensure the results from computational toxicology models are performed and documented in a standardized, consistent, transparent, and accepted manner. In silico toxicology protocols for skin sensitization and genetic toxicology have been previously published and have been implemented within the Leadscope software. The following chapter outlines how such protocols have been deployed in the Leadscope platform including integration with toxicology databases and a battery of computational toxicology models.


Assuntos
Software , Toxicologia , Simulação por Computador , Bases de Dados Factuais , Relação Quantitativa Estrutura-Atividade , Toxicologia/métodos
17.
Comput Toxicol ; 212022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35036665

RESUMO

Mechanistically-driven alternative approaches to hazard assessment invariably require a battery of tests, including both in silico models and experimental data. The decision-making process, from selection of the methods to combining the information based on the weight-of-evidence, is ideally described in published guidelines or protocols. This ensures that the application of such approaches is defendable to reviewers within regulatory agencies and across the industry. Examples include the ICH M7 pharmaceutical impurities guideline and the published in silico toxicology protocols. To support an efficient, transparent, consistent and fully documented implementation of these protocols, a new and novel interactive software solution is described to perform such an integrated hazard assessment based on public and proprietary information.

18.
Comput Toxicol ; 222022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35844258

RESUMO

Neurotoxicology is the study of adverse effects on the structure or function of the developing or mature adult nervous system following exposure to chemical, biological, or physical agents. The development of more informative alternative methods to assess developmental (DNT) and adult (NT) neurotoxicity induced by xenobiotics is critically needed. The use of such alternative methods including in silico approaches that predict DNT or NT from chemical structure (e.g., statistical-based and expert rule-based systems) is ideally based on a comprehensive understanding of the relevant biological mechanisms. This paper discusses known mechanisms alongside the current state of the art in DNT/NT testing. In silico approaches available today that support the assessment of neurotoxicity based on knowledge of chemical structure are reviewed, and a conceptual framework for the integration of in silico methods with experimental information is presented. Establishing this framework is essential for the development of protocols, namely standardized approaches, to ensure that assessments of NT and DNT based on chemical structures are generated in a transparent, consistent, and defendable manner.

19.
Comput Toxicol ; 212022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35368849

RESUMO

Understanding the reliability and relevance of a toxicological assessment is important for gauging the overall confidence and communicating the degree of uncertainty related to it. The process involved in assessing reliability and relevance is well defined for experimental data. Similar criteria need to be established for in silico predictions, as they become increasingly more important to fill data gaps and need to be reasonably integrated as additional lines of evidence. Thus, in silico assessments could be communicated with greater confidence and in a more harmonized manner. The current work expands on previous definitions of reliability, relevance, and confidence and establishes a conceptional framework to apply those to in silico data. The approach is used in two case studies: 1) phthalic anhydride, where experimental data are readily available and 2) 4-hydroxy-3-propoxybenzaldehyde, a data poor case which relies predominantly on in silico methods, showing that reliability, relevance, and confidence of in silico assessments can be effectively communicated within Integrated approaches to testing and assessment (IATA).

20.
Comput Toxicol ; 242022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36818760

RESUMO

Acute toxicity in silico models are being used to support an increasing number of application areas including (1) product research and development, (2) product approval and registration as well as (3) the transport, storage and handling of chemicals. The adoption of such models is being hindered, in part, because of a lack of guidance describing how to perform and document an in silico analysis. To address this issue, a framework for an acute toxicity hazard assessment is proposed. This framework combines results from different sources including in silico methods and in vitro or in vivo experiments. In silico methods that can assist the prediction of in vivo outcomes (i.e., LD50) are analyzed concluding that predictions obtained using in silico approaches are now well-suited for reliably supporting assessment of LD50-based acute toxicity for the purpose of GHS classification. A general overview is provided of the endpoints from in vitro studies commonly evaluated for predicting acute toxicity (e.g., cytotoxicity/cytolethality as well as assays targeting specific mechanisms). The increased understanding of pathways and key triggering mechanisms underlying toxicity and the increased availability of in vitro data allow for a shift away from assessments solely based on endpoints such as LD50, to mechanism-based endpoints that can be accurately assessed in vitro or by using in silico prediction models. This paper also highlights the importance of an expert review of all available information using weight-of-evidence considerations and illustrates, using a series of diverse practical use cases, how in silico approaches support the assessment of acute toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA