Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 164(1-2): 45-56, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26774823

RESUMO

Changes in bone size and shape are defining features of many vertebrates. Here we use genetic crosses and comparative genomics to identify specific regulatory DNA alterations controlling skeletal evolution. Armor bone-size differences in sticklebacks map to a major effect locus overlapping BMP family member GDF6. Freshwater fish express more GDF6 due in part to a transposon insertion, and transgenic overexpression of GDF6 phenocopies evolutionary changes in armor-plate size. The human GDF6 locus also has undergone distinctive regulatory evolution, including complete loss of an enhancer that is otherwise highly conserved between chimps and other mammals. Functional tests show that the ancestral enhancer drives expression in hindlimbs but not forelimbs, in locations that have been specifically modified during the human transition to bipedalism. Both gain and loss of regulatory elements can localize BMP changes to specific anatomical locations, providing a flexible regulatory basis for evolving species-specific changes in skeletal form.


Assuntos
Evolução Biológica , Evolução Molecular , Fator 6 de Diferenciação de Crescimento/genética , Esqueleto/fisiologia , Vertebrados/genética , Adaptação Fisiológica , Animais , Elementos Facilitadores Genéticos , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Água Doce , Fator 6 de Diferenciação de Crescimento/metabolismo , Humanos , Locos de Características Quantitativas , Água do Mar , Esqueleto/anatomia & histologia , Smegmamorpha/genética , Smegmamorpha/fisiologia , Especificidade da Espécie , Vertebrados/classificação , Vertebrados/crescimento & desenvolvimento , Vertebrados/metabolismo
2.
Am J Hum Genet ; 111(2): 259-279, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232730

RESUMO

Tauopathies are a group of neurodegenerative diseases defined by abnormal aggregates of tau, a microtubule-associated protein encoded by MAPT. MAPT expression is near absent in neural progenitor cells (NPCs) and increases during differentiation. This temporally dynamic expression pattern suggests that MAPT expression could be controlled by transcription factors and cis-regulatory elements specific to differentiated cell types. Given the relevance of MAPT expression to neurodegeneration pathogenesis, identification of such elements is relevant to understanding disease risk and pathogenesis. Here, we performed chromatin conformation assays (HiC & Capture-C), single-nucleus multiomics (RNA-seq+ATAC-seq), bulk ATAC-seq, and ChIP-seq for H3K27ac and CTCF in NPCs and differentiated neurons to nominate candidate cis-regulatory elements (cCREs). We assayed these cCREs using luciferase assays and CRISPR interference (CRISPRi) experiments to measure their effects on MAPT expression. Finally, we integrated cCRE annotations into an analysis of genetic variation in neurodegeneration-affected individuals and control subjects. We identified both proximal and distal regulatory elements for MAPT and confirmed the regulatory function for several regions, including three regions centromeric to MAPT beyond the H1/H2 haplotype inversion breakpoint. We also found that rare and predicted damaging genetic variation in nominated CREs was nominally depleted in dementia-affected individuals relative to control subjects, consistent with the hypothesis that variants that disrupt MAPT enhancer activity, and thereby reduced MAPT expression, may be protective against neurodegenerative disease. Overall, this study provides compelling evidence for pursuing detailed knowledge of CREs for genes of interest to permit better understanding of disease risk.


Assuntos
Doenças Neurodegenerativas , Proteínas tau , Humanos , Cromatina/genética , Haplótipos , Doenças Neurodegenerativas/genética , Neurônios , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas tau/genética
3.
Genome Res ; 34(4): 620-632, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631728

RESUMO

Differential gene expression in response to perturbations is mediated at least in part by changes in binding of transcription factors (TFs) and other proteins at specific genomic regions. Association of these cis-regulatory elements (CREs) with their target genes is a challenging task that is essential to address many biological and mechanistic questions. Many current approaches rely on chromatin conformation capture techniques or single-cell correlational methods to establish CRE-to-gene associations. These methods can be effective but have limitations, including resolution, gaps in detectable association distances, and cost. As an alternative, we have developed DegCre, a nonparametric method that evaluates correlations between measurements of perturbation-induced differential gene expression and differential regulatory signal at CREs to score possible CRE-to-gene associations. It has several unique features, including the ability to use any type of CRE activity measurement, yield probabilistic scores for CRE-to-gene pairs, and assess CRE-to-gene pairings across a wide range of sequence distances. We apply DegCre to six data sets, each using different perturbations and containing a variety of regulatory signal measurements, including chromatin openness, histone modifications, and TF occupancy. To test their efficacy, we compare DegCre associations to Hi-C loop calls and CRISPR-validated CRE-to-gene associations, establishing good performance by DegCre that is comparable or superior to competing methods. DegCre is a novel approach to the association of CREs to genes from a perturbation-differential perspective, with strengths that are complementary to existing approaches and allow for new insights into gene regulation.


Assuntos
Cromatina , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Cromatina/metabolismo , Cromatina/genética , Regulação da Expressão Gênica , Sequências Reguladoras de Ácido Nucleico , Elementos Reguladores de Transcrição
4.
Cell ; 151(2): 289-303, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23021777

RESUMO

Th17 cells have critical roles in mucosal defense and are major contributors to inflammatory disease. Their differentiation requires the nuclear hormone receptor RORγt working with multiple other essential transcription factors (TFs). We have used an iterative systems approach, combining genome-wide TF occupancy, expression profiling of TF mutants, and expression time series to delineate the Th17 global transcriptional regulatory network. We find that cooperatively bound BATF and IRF4 contribute to initial chromatin accessibility and, with STAT3, initiate a transcriptional program that is then globally tuned by the lineage-specifying TF RORγt, which plays a focal deterministic role at key loci. Integration of multiple data sets allowed inference of an accurate predictive model that we computationally and experimentally validated, identifying multiple new Th17 regulators, including Fosl2, a key determinant of cellular plasticity. This interconnected network can be used to investigate new therapeutic approaches to manipulate Th17 functions in the setting of inflammatory disease.


Assuntos
Redes Reguladoras de Genes , Células Th17/citologia , Células Th17/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Diferenciação Celular , Encefalomielite Autoimune Experimental/imunologia , Antígeno 2 Relacionado a Fos/imunologia , Antígeno 2 Relacionado a Fos/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Fatores Reguladores de Interferon/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Células Th17/imunologia
5.
Genome Res ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852782

RESUMO

Transcription factors (TFs) are trans-acting proteins that bind cis-regulatory elements (CREs) in DNA to control gene expression. Here, we analyzed the genomic localization profiles of 529 sequence-specific TFs and 151 cofactors and chromatin regulators in the human cancer cell line HepG2, for a total of 680 broadly termed DNA-associated proteins (DAPs). We used this deep collection to model each TF's impact on gene expression, and identified a cohort of 26 candidate transcriptional repressors. We examine high occupancy target (HOT) sites in the context of three-dimensional genome organization and show biased motif placement in distal-promoter connections involving HOT sites. We also found a substantial number of closed chromatin regions with multiple DAPs bound, and explored their properties, finding that a MAFF/MAFK TF pair correlates with transcriptional repression. Altogether, these analyses provide novel insights into the regulatory logic of the human cell line HepG2 genome and show the usefulness of large genomic analyses for elucidation of individual TF functions.

6.
Immunity ; 47(2): 251-267.e7, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813658

RESUMO

Despite considerable research connecting cellular metabolism with differentiation decisions, the underlying mechanisms that translate metabolite-sensitive activities into unique gene programs are still unclear. We found that aspects of the interleukin-2 (IL-2)-sensitive effector gene program in CD4+ and CD8+ T cells in type 1 conditions (Th1) were regulated by glutamine and alpha-ketoglutarate (αKG)-induced events, in part through changes in DNA and histone methylation states. We further identified a mechanism by which IL-2- and αKG-sensitive metabolic changes regulated the association of CCCTC-binding factor (CTCF) with select genomic sites. αKG-sensitive CTCF sites were often associated with loci containing IL-2- and αKG-sensitive genome organization patterns and gene expression in T cells. IL-2- and αKG-sensitive CTCF sites in T cells were also associated with genes from developmental pathways that had αKG-sensitive expression in embryonic stem cells. The data collectively support a mechanism wherein CTCF serves to translate αKG-sensitive metabolic changes into context-dependent differentiation gene programs.


Assuntos
Diferenciação Celular , Interleucina-2/metabolismo , Ácidos Cetoglutáricos/metabolismo , Proteínas Repressoras/metabolismo , Células Th1/imunologia , Animais , Fator de Ligação a CCCTC , Diferenciação Celular/genética , Células Cultivadas , Microambiente Celular , Metilação de DNA , Feminino , Regulação da Expressão Gênica , Glutamina/metabolismo , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Repressoras/genética
7.
Nature ; 583(7818): 720-728, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32728244

RESUMO

Transcription factors are DNA-binding proteins that have key roles in gene regulation1,2. Genome-wide occupancy maps of transcriptional regulators are important for understanding gene regulation and its effects on diverse biological processes3-6. However, only a minority of the more than 1,600 transcription factors encoded in the human genome has been assayed. Here we present, as part of the ENCODE (Encyclopedia of DNA Elements) project, data and analyses from chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) experiments using the human HepG2 cell line for 208 chromatin-associated proteins (CAPs). These comprise 171 transcription factors and 37 transcriptional cofactors and chromatin regulator proteins, and represent nearly one-quarter of CAPs expressed in HepG2 cells. The binding profiles of these CAPs form major groups associated predominantly with promoters or enhancers, or with both. We confirm and expand the current catalogue of DNA sequence motifs for transcription factors, and describe motifs that correspond to other transcription factors that are co-enriched with the primary ChIP target. For example, FOX family motifs are enriched in ChIP-seq peaks of 37 other CAPs. We show that motif content and occupancy patterns can distinguish between promoters and enhancers. This catalogue reveals high-occupancy target regions at which many CAPs associate, although each contains motifs for only a minority of the numerous associated transcription factors. These analyses provide a more complete overview of the gene regulatory networks that define this cell type, and demonstrate the usefulness of the large-scale production efforts of the ENCODE Consortium.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Anotação de Sequência Molecular , Sequências Reguladoras de Ácido Nucleico/genética , Conjuntos de Dados como Assunto , Elementos Facilitadores Genéticos/genética , Células Hep G2 , Humanos , Motivos de Nucleotídeos/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fatores de Transcrição/metabolismo
8.
Nature ; 583(7818): 693-698, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32728248

RESUMO

The Encylopedia of DNA Elements (ENCODE) Project launched in 2003 with the long-term goal of developing a comprehensive map of functional elements in the human genome. These included genes, biochemical regions associated with gene regulation (for example, transcription factor binding sites, open chromatin, and histone marks) and transcript isoforms. The marks serve as sites for candidate cis-regulatory elements (cCREs) that may serve functional roles in regulating gene expression1. The project has been extended to model organisms, particularly the mouse. In the third phase of ENCODE, nearly a million and more than 300,000 cCRE annotations have been generated for human and mouse, respectively, and these have provided a valuable resource for the scientific community.


Assuntos
Bases de Dados Genéticas , Genoma/genética , Genômica , Anotação de Sequência Molecular , Animais , Sítios de Ligação , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA , Bases de Dados Genéticas/normas , Bases de Dados Genéticas/tendências , Regulação da Expressão Gênica/genética , Genoma Humano/genética , Genômica/normas , Genômica/tendências , Histonas/metabolismo , Humanos , Camundongos , Anotação de Sequência Molecular/normas , Controle de Qualidade , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismo
9.
Genome Res ; 31(5): 866-876, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33879525

RESUMO

Massively parallel reporter assays (MPRAs) are useful tools to characterize regulatory elements in human genomes. An aspect of MPRAs that is not typically the focus of analysis is their intrinsic ability to differentiate activity levels for a given sequence element when placed in both of its possible orientations relative to the reporter construct. Here, we describe pervasive strand asymmetry of MPRA signals in data sets from multiple reporter configurations in both published and newly reported data. These effects are reproducible across different cell types and in different treatments within a cell type and are observed both within and outside of annotated regulatory elements. From elements in gene bodies, MPRA strand asymmetry favors the sense strand, suggesting that function related to endogenous transcription is driving the phenomenon. Similarly, we find that within Alu mobile element insertions, strand asymmetry favors the transcribed strand of the ancestral retrotransposon. The effect is consistent across the multiplicity of Alu elements in human genomes and is more pronounced in less diverged Alu elements. We find sequence features driving MPRA strand asymmetry and show its prediction from sequence alone. We see some evidence for RNA stabilization and transcriptional activation mechanisms and hypothesize that the effect is driven by natural selection favoring efficient transcription. Our results indicate that strand asymmetry is a pervasive and reproducible feature in MPRA data. More importantly, the fact that MPRA asymmetry favors naturally transcribed strands suggests that it stems from preserved biological functions that have a substantial, global impact on gene and genome evolution.


Assuntos
Genoma Humano , Sequências Reguladoras de Ácido Nucleico , Regulação da Expressão Gênica , Genes Reporter , Humanos
10.
Nature ; 562(7725): 150, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29973715

RESUMO

Change History: This Article has been retracted; see accompanying Retraction. Corrected online 20 January: In this Article, author Frank Rigo was incorrectly listed with a middle initial; this has been corrected in the online versions of the paper.

11.
Mol Cell ; 61(6): 859-73, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26990989

RESUMO

Dysregulation of MLL complex-mediated histone methylation plays a pivotal role in gene expression associated with diseases, but little is known about cellular factors modulating MLL complex activity. Here, we report that SON, previously known as an RNA splicing factor, controls MLL complex-mediated transcriptional initiation. SON binds to DNA near transcription start sites, interacts with menin, and inhibits MLL complex assembly, resulting in decreased H3K4me3 and transcriptional repression. Importantly, alternatively spliced short isoforms of SON are markedly upregulated in acute myeloid leukemia. The short isoforms compete with full-length SON for chromatin occupancy but lack the menin-binding ability, thereby antagonizing full-length SON function in transcriptional repression while not impairing full-length SON-mediated RNA splicing. Furthermore, overexpression of a short isoform of SON enhances replating potential of hematopoietic progenitors. Our findings define SON as a fine-tuner of the MLL-menin interaction and reveal short SON overexpression as a marker indicating aberrant transcriptional initiation in leukemia.


Assuntos
Proteínas de Ligação a DNA/genética , Histona-Lisina N-Metiltransferase/biossíntese , Leucemia Mieloide Aguda/genética , Proteína de Leucina Linfoide-Mieloide/biossíntese , Proteínas Proto-Oncogênicas/genética , Transcrição Gênica , Processamento Alternativo/genética , Linhagem Celular Tumoral , Cromatina/genética , Proteínas de Ligação a DNA/biossíntese , Regulação Leucêmica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Humanos , Leucemia Mieloide Aguda/patologia , Metilação , Antígenos de Histocompatibilidade Menor , Proteína de Leucina Linfoide-Mieloide/genética , Ligação Proteica , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas/metabolismo
12.
PLoS Genet ; 17(1): e1009195, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411788

RESUMO

Dravet syndrome (DS) is a developmental and epileptic encephalopathy that results from mutations in the Nav1.1 sodium channel encoded by SCN1A. Most known DS-causing mutations are in coding regions of SCN1A, but we recently identified several disease-associated SCN1A mutations in intron 20 that are within or near to a cryptic and evolutionarily conserved "poison" exon, 20N, whose inclusion is predicted to lead to transcript degradation. However, it is not clear how these intron 20 variants alter SCN1A expression or DS pathophysiology in an organismal context, nor is it clear how exon 20N is regulated in a tissue-specific and developmental context. We address those questions here by generating an animal model of our index case, NM_006920.4(SCN1A):c.3969+2451G>C, using gene editing to create the orthologous mutation in laboratory mice. Scn1a heterozygous knock-in (+/KI) mice exhibited an ~50% reduction in brain Scn1a mRNA and Nav1.1 protein levels, together with characteristics observed in other DS mouse models, including premature mortality, seizures, and hyperactivity. In brain tissue from adult Scn1a +/+ animals, quantitative RT-PCR assays indicated that ~1% of Scn1a mRNA included exon 20N, while brain tissue from Scn1a +/KI mice exhibited an ~5-fold increase in the extent of exon 20N inclusion. We investigated the extent of exon 20N inclusion in brain during normal fetal development in RNA-seq data and discovered that levels of inclusion were ~70% at E14.5, declining progressively to ~10% postnatally. A similar pattern exists for the homologous sodium channel Nav1.6, encoded by Scn8a. For both genes, there is an inverse relationship between the level of functional transcript and the extent of poison exon inclusion. Taken together, our findings suggest that poison exon usage by Scn1a and Scn8a is a strategy to regulate channel expression during normal brain development, and that mutations recapitulating a fetal-like pattern of splicing cause reduced channel expression and epileptic encephalopathy.


Assuntos
Epilepsias Mioclônicas/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Epilepsias Mioclônicas/patologia , Éxons/genética , Regulação da Expressão Gênica/genética , Técnicas de Introdução de Genes , Humanos , Íntrons/genética , Camundongos , Mutação/genética , Especificidade de Órgãos/genética , RNA-Seq
13.
Am J Hum Genet ; 106(5): 632-645, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32330418

RESUMO

We conducted genome sequencing to search for rare variation contributing to early-onset Alzheimer's disease (EOAD) and frontotemporal dementia (FTD). Discovery analysis was conducted on 435 cases and 671 controls of European ancestry. Burden testing for rare variation associated with disease was conducted using filters based on variant rarity (less than one in 10,000 or private), computational prediction of deleteriousness (CADD) (10 or 15 thresholds), and molecular function (protein loss-of-function [LoF] only, coding alteration only, or coding plus non-coding variants in experimentally predicted regulatory regions). Replication analysis was conducted on 16,434 independent cases and 15,587 independent controls. Rare variants in TET2 were enriched in the discovery combined EOAD and FTD cohort (p = 4.6 × 10-8, genome-wide corrected p = 0.0026). Most of these variants were canonical LoF or non-coding in predicted regulatory regions. This enrichment replicated across several cohorts of Alzheimer's disease (AD) and FTD (replication only p = 0.0029). The combined analysis odds ratio was 2.3 (95% confidence interval [CI] 1.6-3.4) for AD and FTD. The odds ratio for qualifying non-coding variants considered independently from coding variants was 3.7 (95% CI 1.7-9.4). For LoF variants, the combined odds ratio (for AD, FTD, and amyotrophic lateral sclerosis, which shares clinicopathological overlap with FTD) was 3.1 (95% CI 1.9-5.2). TET2 catalyzes DNA demethylation. Given well-defined changes in DNA methylation that occur during aging, rare variation in TET2 may confer risk for neurodegeneration by altering the homeostasis of key aging-related processes. Additionally, our study emphasizes the relevance of non-coding variation in genetic studies of complex disease.


Assuntos
Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Mutação com Perda de Função/genética , Doenças Neurodegenerativas/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Animais , Cognição , Dioxigenases , Feminino , Demência Frontotemporal/genética , Humanos , Masculino , Camundongos
14.
Genome Res ; 30(7): 939-950, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32616518

RESUMO

DNA-associated proteins (DAPs) classically regulate gene expression by binding to regulatory loci such as enhancers or promoters. As expanding catalogs of genome-wide DAP binding maps reveal thousands of loci that, unlike the majority of conventional enhancers and promoters, associate with dozens of different DAPs with apparently little regard for motif preference, an understanding of DAP association and coordination at such regulatory loci is essential to deciphering how these regions contribute to normal development and disease. In this study, we aggregated publicly available ChIP-seq data from 469 human DAPs assayed in three cell lines and integrated these data with an orthogonal data set of 352 nonredundant, in vitro-derived motifs mapped to the genome within DNase I hypersensitivity footprints to characterize regions with high numbers of DAP associations. We establish a generalizable definition for high occupancy target (HOT) loci and identify putative driver DAP motifs in HepG2 cells, including HNF4A, SP1, SP5, and ETV4, that are highly prevalent and show sequence conservation at HOT loci. The number of different DAPs associated with an element is positively associated with evidence of regulatory activity, and by systematically mutating 245 HOT loci with a massively parallel mutagenesis assay, we localized regulatory activity to a central core region that depends on the motif sequences of our previously nominated driver DAPs. In sum, this work leverages the increasingly large number of DAP motif and ChIP-seq data publicly available to explore how DAP associations contribute to genome-wide transcriptional regulation.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Composição de Bases , Linhagem Celular , Cromatina/química , Sequenciamento de Cromatina por Imunoprecipitação , DNA/química , Loci Gênicos , Genoma , Células Hep G2 , Humanos , Mutagênese , Mutação , Motivos de Nucleotídeos
15.
J Autoimmun ; 139: 103089, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37506491

RESUMO

Systemic Lupus Erythematosus (SLE) is a chronic, multisystem, inflammatory autoimmune disease that disproportionately affects women. Trends in SLE prevalence and clinical course differ by ancestry, with those of African American ancestry presenting with more active, severe and rapidly progressive disease than European Americans. Previous research established altered epigenetic signatures in SLE patients compared to controls. However, the contribution of aberrant DNA methylation (DNAm) to the risk of SLE by ancestry and differences among patients with SLE-associated Lupus Nephritis (LN) has not been well described. We evaluated the DNA methylomes of 87 individuals including 41 SLE patients, with and without LN, and 46 controls enrolled in an ancestry diverse, well-characterized cohort study of established SLE (41 SLE patients [20 SLE-LN+, 21 SLE-LN-] and 46 sex-, race- and age-matched controls; 55% African American, 45% European American). Participants were genotyped using the Infinium Global Diversity Array (GDA), and genetic ancestry was estimated using principal components. Genome-wide DNA methylation was initially measured using the Illumina MethylationEPIC 850K Beadchip array followed by methylation-specific qPCR to validate the methylation status at putative loci. Differentially Methylated Positions (DMP) were identified using a case-control approach adjusted for ancestry. We identified a total of 51 DMPs in CpGs among SLE patients compared to controls. Genes proximal to these CpGs were highly enriched for involvement in type I interferon signaling. DMPs among European American SLE patients with LN were similar to African American SLE patients with and without LN. Our findings were validated using an orthogonal, methyl-specific PCR for three SLE-associated DMPs near or proximal to MX1, USP18, and IFITM1. Our study confirms previous reports that DMPs in CpGs associated with SLE are enriched in type I interferon genes. However, we show that European American SLE patients with LN have similar DNAm patterns to African American SLE patients irrespective of LN, suggesting that aberrant DNAm alters activity of type I interferon pathway leading to more severe disease independent of ancestry.


Assuntos
Metilação de DNA , Lúpus Eritematoso Sistêmico , Feminino , Humanos , Negro ou Afro-Americano/genética , Estudos de Coortes , Interferon Tipo I/genética , Lúpus Eritematoso Sistêmico/epidemiologia , Lúpus Eritematoso Sistêmico/genética , Nefrite Lúpica/epidemiologia , Nefrite Lúpica/genética , Ubiquitina Tiolesterase/genética , População Branca/genética , Masculino
17.
PLoS Genet ; 16(12): e1008671, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33290415

RESUMO

Cerebral cortical size and organization are critical features of neurodevelopment and human evolution, for which genetic investigation in model organisms can provide insight into developmental mechanisms and the causes of cerebral malformations. However, some abnormalities in cerebral cortical proliferation and folding are challenging to study in laboratory mice due to the absence of gyri and sulci in rodents. We report an autosomal recessive allele in domestic cats associated with impaired cerebral cortical expansion and folding, giving rise to a smooth, lissencephalic brain, and that appears to be caused by homozygosity for a frameshift in PEA15 (phosphoprotein expressed in astrocytes-15). Notably, previous studies of a Pea15 targeted mutation in mice did not reveal structural brain abnormalities. Affected cats, however, present with a non-progressive hypermetric gait and tremors, develop dissociative behavioral defects and aggression with age, and exhibit profound malformation of the cerebrum, with a 45% average decrease in overall brain weight, and reduction or absence of the ectosylvian, sylvian and anterior cingulate gyrus. Histologically, the cerebral cortical layers are disorganized, there is substantial loss of white matter in tracts such as the corona radiata and internal capsule, but the cerebellum is relatively spared. RNA-seq and immunohistochemical analysis reveal astrocytosis. Fibroblasts cultured from affected cats exhibit increased TNFα-mediated apoptosis, and increased FGFb-induced proliferation, consistent with previous studies implicating PEA15 as an intracellular adapter protein, and suggesting an underlying pathophysiology in which increased death of neurons accompanied by increased proliferation of astrocytes gives rise to abnormal organization of neuronal layers and loss of white matter. Taken together, our work points to a new role for PEA15 in development of a complex cerebral cortex that is only apparent in gyrencephalic species.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Encefalopatias/veterinária , Doenças do Gato/genética , Córtex Cerebral/metabolismo , Mutação com Perda de Função , Fosfoproteínas/genética , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Astrócitos/citologia , Astrócitos/metabolismo , Encefalopatias/genética , Encefalopatias/patologia , Doenças do Gato/patologia , Gatos , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Neurogênese , Fosfoproteínas/metabolismo
18.
Alzheimers Dement ; 19(9): 3835-3847, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36951251

RESUMO

INTRODUCTION: Genetic associations with Alzheimer's disease (AD) age at onset (AAO) could reveal genetic variants with therapeutic applications. We present a large Colombian kindred with autosomal dominant AD (ADAD) as a unique opportunity to discover AAO genetic associations. METHODS: A genetic association study was conducted to examine ADAD AAO in 340 individuals with the PSEN1 E280A mutation via TOPMed array imputation. Replication was assessed in two ADAD cohorts, one sporadic early-onset AD study and four late-onset AD studies. RESULTS: 13 variants had p<1×10-7 or p<1×10-5 with replication including three independent loci with candidate associations with clusterin including near CLU. Other suggestive associations were identified in or near HS3ST1, HSPG2, ACE, LRP1B, TSPAN10, and TSPAN14. DISCUSSION: Variants with suggestive associations with AAO were associated with biological processes including clusterin, heparin sulfate, and amyloid processing. The detection of these effects in the presence of a strong mutation for ADAD reinforces their potentially impactful role.


Assuntos
Doença de Alzheimer , Clusterina , Humanos , Clusterina/genética , Colômbia , Doença de Alzheimer/diagnóstico , Mutação/genética , Amiloide , Presenilina-1/genética , Idade de Início
19.
Genome Res ; 29(11): 1900-1909, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31645363

RESUMO

MicroRNAs (miRNAs) play a critical role as posttranscriptional regulators of gene expression. The ENCODE Project profiled the expression of miRNAs in an extensive set of organs during a time-course of mouse embryonic development and captured the expression dynamics of 785 miRNAs. We found distinct organ-specific and developmental stage-specific miRNA expression clusters, with an overall pattern of increasing organ-specific expression as embryonic development proceeds. Comparative analysis of conserved miRNAs in mouse and human revealed stronger clustering of expression patterns by organ type rather than by species. An analysis of messenger RNA expression clusters compared with miRNA expression clusters identifies the potential role of specific miRNA expression clusters in suppressing the expression of mRNAs specific to other developmental programs in the organ in which these miRNAs are expressed during embryonic development. Our results provide the most comprehensive time-course of miRNA expression as part of an integrated ENCODE reference data set for mouse embryonic development.


Assuntos
Desenvolvimento Embrionário/genética , MicroRNAs/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Gravidez , RNA Mensageiro/genética
20.
Genome Res ; 29(5): 809-818, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30940688

RESUMO

Large-scale sequencing efforts in amyotrophic lateral sclerosis (ALS) have implicated novel genes using gene-based collapsing methods. However, pathogenic mutations may be concentrated in specific genic regions. To address this, we developed two collapsing strategies: One focuses rare variation collapsing on homology-based protein domains as the unit for collapsing, and the other is a gene-level approach that, unlike standard methods, leverages existing evidence of purifying selection against missense variation on said domains. The application of these two collapsing methods to 3093 ALS cases and 8186 controls of European ancestry, and also 3239 cases and 11,808 controls of diversified populations, pinpoints risk regions of ALS genes, including SOD1, NEK1, TARDBP, and FUS While not clearly implicating novel ALS genes, the new analyses not only pinpoint risk regions in known genes but also highlight candidate genes as well.


Assuntos
Esclerose Lateral Amiotrófica/genética , Análise Mutacional de DNA/métodos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Feminino , Variação Genética , Humanos , Masculino , Mutação , Quinase 1 Relacionada a NIMA/genética , Domínios Proteicos/genética , Proteína FUS de Ligação a RNA/genética , Fatores de Risco , Superóxido Dismutase-1/genética , População Branca/genética , Sequenciamento do Exoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA