Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(2): e2304135120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38147542

RESUMO

Active hydroponic substrates that stimulate on demand the plant growth have not been demonstrated so far. Here, we developed the eSoil, a low-power bioelectronic growth scaffold that can provide electrical stimulation to the plants' root system and growth environment in hydroponics settings. eSoil's active material is an organic mixed ionic electronic conductor while its main structural component is cellulose, the most abundant biopolymer. We demonstrate that barley seedlings that are widely used for fodder grow within the eSoil with the root system integrated within its porous matrix. Simply by polarizing the eSoil, seedling growth is accelerated resulting in increase of dry weight on average by 50% after 15 d of growth. The effect is evident both on root and shoot development and occurs during the growth period after the stimulation. The stimulated plants reduce and assimilate NO3- more efficiently than controls, a finding that may have implications on minimizing fertilizer use. However, more studies are required to provide a mechanistic understanding of the physical and biological processes involved. eSoil opens the pathway for the development of active hydroponic scaffolds that may increase crop yield in a sustainable manner.


Assuntos
Fenômenos Biológicos , Plântula , Plântula/metabolismo , Hidroponia/métodos , Raízes de Plantas/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(26): e2118852119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727987

RESUMO

Carbon storage and cycling in boreal forests-the largest terrestrial carbon store-is moderated by complex interactions between trees and soil microorganisms. However, existing methods limit our ability to predict how changes in environmental conditions will alter these associations and the essential ecosystem services they provide. To address this, we developed a metatranscriptomic approach to analyze the impact of nutrient enrichment on Norway spruce fine roots and the community structure, function, and tree-microbe coordination of over 350 root-associated fungal species. In response to altered nutrient status, host trees redefined their relationship with the fungal community by reducing sugar efflux carriers and enhancing defense processes. This resulted in a profound restructuring of the fungal community and a collapse in functional coordination between the tree and the dominant Basidiomycete species, and an increase in functional coordination with versatile Ascomycete species. As such, there was a functional shift in community dominance from Basidiomycetes species, with important roles in enzymatically cycling recalcitrant carbon, to Ascomycete species that have melanized cell walls that are highly resistant to degradation. These changes were accompanied by prominent shifts in transcriptional coordination between over 60 predicted fungal effectors, with more than 5,000 Norway spruce transcripts, providing mechanistic insight into the complex molecular dialogue coordinating host trees and their fungal partners. The host-microbe dynamics captured by this study functionally inform how these complex and sensitive biological relationships may mediate the carbon storage potential of boreal soils under changing nutrient conditions.


Assuntos
Ascomicetos , Basidiomycota , Micorrizas , Picea , Ascomicetos/metabolismo , Basidiomycota/metabolismo , Carbono/metabolismo , Ecossistema , Florestas , Micorrizas/genética , Micorrizas/fisiologia , Picea/genética , Picea/microbiologia , Solo/química , Microbiologia do Solo , Taiga , Transcriptoma , Árvores/metabolismo , Árvores/microbiologia
3.
New Phytol ; 239(1): 19-28, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149889

RESUMO

Seminal scientific papers positing that mycorrhizal fungal networks can distribute carbon (C) among plants have stimulated a popular narrative that overstory trees, or 'mother trees', support the growth of seedlings in this way. This narrative has far-reaching implications for our understanding of forest ecology and has been controversial in the scientific community. We review the current understanding of ectomycorrhizal C metabolism and observations on forest regeneration that make the mother tree narrative debatable. We then re-examine data and conclusions from publications that underlie the mother tree hypothesis. Isotopic labeling methods are uniquely suited for studying element fluxes through ecosystems, but the complexity of mycorrhizal symbiosis, low detection limits, and small carbon discrimination in biological processes can cause researchers to make important inferences based on miniscule shifts in isotopic abundance, which can be misleading. We conclude that evidence of a significant net C transfer via common mycorrhizal networks that benefits the recipients is still lacking. Furthermore, a role for fungi as a C pipeline between trees is difficult to reconcile with any adaptive advantages for the fungi. Finally, the hypothesis is neither supported by boreal forest regeneration patterns nor consistent with the understanding of physiological mechanisms controlling mycorrhizal symbiosis.


Assuntos
Micorrizas , Humanos , Carbono/metabolismo , Ecossistema , Florestas , Micorrizas/fisiologia , Microbiologia do Solo , Árvores/fisiologia
4.
New Phytol ; 239(6): 2166-2179, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37148187

RESUMO

Nitrogen (N) fertilization increases biomass and soil organic carbon (SOC) accumulation in boreal pine forests, but the underlying mechanisms remain uncertain. At two Scots pine sites, one undergoing annual N fertilization and the other a reference, we sought to explain these responses. We measured component fluxes, including biomass production, SOC accumulation, and respiration, and summed them into carbon budgets. We compared the resulting summations to ecosystem fluxes measured by eddy covariance. N fertilization increased most component fluxes (P < 0.05), especially SOC accumulation (20×). Only fine-root, mycorrhiza, and exudate production decreased, by 237 (SD = 28) g C m-2 yr-1 . Stemwood production increases were ascribed to this partitioning shift, gross primary production (GPP), and carbon-use efficiency, in that order. The methods agreed in their estimates of GPP in both stands (P > 0.05), but the components detected an increase in net ecosystem production (NEP) (190 (54) g C m-2 yr-1 ; P < 0.01) that eddy covariance did not (19 (62) g C m-2 yr-1 ; ns). The pairing of plots, the simplicity of the sites, and the strength of response provide a compelling description of N effects on the C budget. However, the disagreement between methods calls for further paired tests of N fertilization effects in simple forest ecosystems.


Assuntos
Ecossistema , Pinus sylvestris , Carbono , Árvores/fisiologia , Nitrogênio , Solo , Florestas , Dióxido de Carbono
5.
Plant Mol Biol ; 109(4-5): 413-425, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35103913

RESUMO

The interaction between plants and plant pathogens can have significant effects on ecosystem performance. For their growth and development, both bionts rely on amino acids. While amino acids are key transport forms of nitrogen and can be directly absorbed from the soil through specific root amino acid transporters, various pathogenic microbes can invade plant tissues to feed on different plant amino acid pools. In parallel, plants may initiate an immune response program to restrict this invasion, employing various amino acid transporters to modify the amino acid pool at the site of pathogen attack. The interaction between pathogens and plants is sophisticated and responses are dynamic. Both avail themselves of multiple tools to increase their chance of survival. In this review, we highlight the role of amino acid transporters during pathogen infection. Having control over the expression of those transporters can be decisive for the fate of both bionts but the underlying mechanism that regulates the expression of amino acid transporters is not understood to date. We provide an overview of the regulation of a variety of amino acid transporters, depending on interaction with biotrophic, hemibiotrophic or necrotrophic pathogens. In addition, we aim to highlight the interplay of different physiological processes on amino acid transporter regulation during pathogen attack and chose the LYSINE HISTIDINE TRANSPORTER1 (LHT1) as an example.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ecossistema
6.
Physiol Plant ; 174(3): e13690, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35460591

RESUMO

Fertilization with nitrogen (N)-rich compounds leads to increased growth but may compromise phenology and winter survival of trees in boreal regions. During autumn, N is remobilized from senescing leaves and stored in other parts of the tree to be used in the next growing season. However, the mechanism behind the N fertilization effect on winter survival is not well understood, and it is unclear how N levels or forms modulate autumn senescence. We performed fertilization experiments and showed that treating Populus saplings with inorganic nitrogen resulted in a delay in senescence. In addition, by using precise delivery of solutes into the xylem stream of Populus trees in their natural environment, we found that delay of autumn senescence was dependent on the form of N administered: inorganic N ( NO 3 - ) delayed senescence, but amino acids (Arg, Glu, Gln, and Leu) did not. Metabolite profiling of leaves showed that the levels of tricarboxylic acids, arginine catabolites (ammonium, ornithine), glycine, glycine-serine ratio and overall carbon-to-nitrogen (C/N) ratio were affected differently by the way of applying NO3 - and Arg treatments. In addition, the onset of senescence did not coincide with soluble sugar accumulation in control trees or in any of the treatments. We propose that different regulation of C and N status through direct molecular signaling of NO3 - and/or different allocation of N between tree parts depending on N forms could account for the contrasting effects of NO3 - and tested here amino acids (Arg, Glu, Gln, and Leu) on autumn senescence.


Assuntos
Nitratos , Populus , Aminoácidos , Fertilização , Glicina , Nitratos/metabolismo , Nitratos/farmacologia , Nitrogênio/metabolismo , Folhas de Planta/fisiologia , Senescência Vegetal , Populus/metabolismo , Estações do Ano , Árvores/metabolismo
7.
Ecol Lett ; 24(6): 1215-1224, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33749095

RESUMO

Trees receive growth-limiting nitrogen from their ectomycorrhizal symbionts, but supplying the fungi with carbon can also cause nitrogen immobilization, which hampers tree growth. We present results from field and greenhouse experiments combined with mathematical modelling, showing that these are not conflicting outcomes. Mycorrhizal networks connect multiple trees, and we modulated C provision by strangling subsets of Pinus sylvestris trees, assuming that carbon supply to fungi was reduced proportionally to the strangled fraction. We conclude that trees gain additional nitrogen at the expense of their neighbours by supplying more carbon to the fungi. But this additional carbon supply aggravates nitrogen limitation via immobilization of the shared fungal biomass. We illustrate the evolutionary underpinnings of this situation by drawing on the analogous tragedy of the commons, where the shared mycorrhizal network is the commons, and explain how rising atmospheric CO2 may lead to greater nitrogen immobilization in the future.


Assuntos
Micorrizas , Biomassa , Carbono , Nitrogênio , Raízes de Plantas , Solo , Árvores
8.
New Phytol ; 232(1): 113-122, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34166537

RESUMO

Understanding how plant water uptake interacts with acquisition of soil nitrogen (N) and other nutrients is fundamental for predicting plant responses to a changing environment, but it is an area where models disagree. We present a novel isotopic labelling approach which reveals spatial patterns of water and N uptake, and their interaction, by trees. The stable isotopes 15 N and 2 H were applied to a small area of the forest floor in stands with high and low soil N availability. Uptake by surrounding trees was measured. The sensitivity of N acquisition to water uptake was quantified by statistical modelling. Trees in the high-N stand acquired twice as much 15 N as in the low-N stand and around half of their N uptake was dependent on water uptake (2 H enrichment). By contrast, in the low-N stand there was no positive effect of water uptake on N uptake. We conclude that tree N acquisition was only marginally dependent on water flux toward the root surface under low-N conditions whereas under high-N conditions, the water-associated N uptake was substantial. The results suggest a fundamental shift in N acquisition strategy under high-N conditions.


Assuntos
Pinus sylvestris , Árvores , Nitrogênio/análise , Solo , Taiga , Água
9.
Physiol Plant ; 167(1): 34-47, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30561048

RESUMO

Cellular respiration via the alternative oxidase pathway (AOP) leads to a considerable loss in efficiency. Compared to the cytochrome pathway (COP), AOP produces 0-50% as much ATP per carbon (C) respired. Relative partitioning between the pathways can be measured in vivo based on their differing isotopic discriminations against 18 O in O2 . Starting from published methods, we have refined and tested a new protocol to improve measurement precision and efficiency. The refinements detect an effect of tissue water content (P < 0.0001), which we have removed, and yield precise discrimination endpoints in the presence of pathway-specific respiratory inhibitors [CN- and salicylhydroxamic acid (SHAM)], which improves estimates of AOP/COP partitioning. Fresh roots of Pinus sylvestris were sealed in vials with a CO2 trap. The air was replaced to ensure identical starting conditions. Headspace air was repeatedly sampled and isotopically analyzed using isotope-ratio mass spectrometry. The method allows high-precision measurement of the discrimination against 18 O in O2 because of repeated measurements of the same incubation vial. COP and AOP respiration discriminated against 18 O by 15.1 ± 0.3‰ and 23.8 ± 0.4‰, respectively. AOP contributed to root respiration by 23 ± 0.2% of the total in an unfertilized stand. In a second, nitrogen-fertilized, stand AOP contribution was only 14 ± 0.2% of the total. These results suggest the improved method can be used to assess the relative importance of COP and AOP activities in ecosystems, potentially yielding information on the role of each pathway for the carbon use efficiency of organisms.


Assuntos
Respiração Celular/fisiologia , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Pinus/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Oxigênio/metabolismo
10.
New Phytol ; 218(1): 119-130, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29226964

RESUMO

The classic model of nitrogen (N) flux into roots is as a Michaelis-Menten (MM) function of soil-N concentration at root surfaces. Furthermore, soil-N transport processes that determine soil-N concentration at root surfaces are seen as a bottleneck for plant nutrition. Yet, neither the MM relationship nor soil-N transport mechanisms are represented in current terrestrial biosphere models. Processes governing N supply to roots - diffusion, mass flow, N immobilization by soil microbes - are incorporated in a model of root-N uptake. We highlight a seldom considered interaction between these processes: nutrient traverses the rhizosphere more quickly in the presence of mass flow, reducing the probability of its immobilization before reaching the root surface. Root-N uptake is sensitive to the rate of mass flow for widely spaced roots with high N uptake capacity, but not for closely spaced roots or roots with low uptake capacity. The results point to a benefit of root switching from high- to low-affinity N transport systems in the presence of mass flow. Simulations indicate a strong impact of soil water uptake on N delivery to widely spaced roots through transpirationally driven mass flow. Furthermore, a given rate of N uptake per unit soil volume may be achieved by lower root biomass in the presence of mass flow.


Assuntos
Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Transporte Biológico , Modelos Biológicos , Tamanho do Órgão
12.
Physiol Plant ; 162(3): 370-378, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28718915

RESUMO

A key weakness in current Earth System Models is the representation of thermal acclimation of photosynthesis in response to changes in growth temperatures. Previous studies in boreal and temperate ecosystems have shown leaf-scale photosynthetic capacity parameters, the maximum rates of carboxylation (Vcmax ) and electron transport (Jmax ), to be positively correlated with foliar nitrogen (N) content at a given reference temperature. It is also known that Vcmax and Jmax exhibit temperature optima that are affected by various environmental factors and, further, that N partitioning among the foliar photosynthetic pools is affected by N availability. However, despite the strong recent anthropogenic influence on atmospheric temperatures and N deposition to forests, little is known about the role of foliar N contents in controlling the photosynthetic temperature responses. In this study, we investigated the temperature dependencies of Vcmax and Jmax in 1-year-old needles of mature boreal Pinus sylvestris (Scots pine) trees growing under low and high N availabilities in northern Sweden. We found that needle N status did not significantly affect the temperature responses of Vcmax or Jmax when the responses were fitted to a peaked function. If such N insensitivity is a common tree trait it will simplify the interpretation of the results from gradient and multi-species studies, which commonly use sites with differing N availabilities, on temperature acclimation of photosynthetic capacity. Moreover, it will simplify modeling efforts aimed at understanding future carbon uptake by precluding the need to adjust the shape of the temperature response curves to variation in N availability.


Assuntos
Nitrogênio/metabolismo , Fotossíntese/fisiologia , Pinus sylvestris/fisiologia , Folhas de Planta/fisiologia , Temperatura , Aclimatação/fisiologia , Algoritmos , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Ecossistema , Transporte de Elétrons , Fertilizantes , Pinus sylvestris/metabolismo , Folhas de Planta/metabolismo , Estações do Ano , Suécia
13.
Plant Cell Environ ; 40(1): 25-35, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27241731

RESUMO

The importance of organic nitrogen (N) for plant nutrition and productivity is increasingly being recognized. Here we show that it is not only the availability in the soil that matters, but also the effects on plant growth. The chemical form of N taken up, whether inorganic (such as nitrate) or organic (such as amino acids), may significantly influence plant shoot and root growth, and nitrogen use efficiency (NUE). We analysed these effects by synthesizing results from multiple laboratory experiments on small seedlings (Arabidopsis, poplar, pine and spruce) based on a tractable plant growth model. A key point is that the carbon cost of assimilating organic N into proteins is lower than that of inorganic N, mainly because of its carbon content. This carbon bonus makes it more beneficial for plants to take up organic than inorganic N, even when its availability to the roots is much lower - up to 70% lower for Arabidopsis seedlings. At equal growth rate, root:shoot ratio was up to three times higher and nitrogen productivity up to 20% higher for organic than inorganic N, which both are factors that may contribute to higher NUE in crop production.


Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Compostos Orgânicos/metabolismo , Plantas/metabolismo , Biomassa , Luz , Modelos Biológicos , Nitrogênio/farmacologia , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos da radiação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/efeitos da radiação , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/efeitos da radiação , Plantas/efeitos dos fármacos , Plantas/efeitos da radiação
14.
Plant Cell Environ ; 40(3): 413-423, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27943312

RESUMO

Although organic nitrogen (N) compounds are ubiquitous in soil solutions, their potential role in plant N nutrition has been questioned. We performed a range of experiments on Arabidopsis thaliana genetically modified to enhance or reduce root uptake of amino acids. Plants lacking expression of the Lysine Histidine Transporter 1 (LHT1) displayed significantly lower contents of 13 C and 15 N label and of U-13 C5 ,15 N2 L-glutamine, as determined by liquid chromatography-mass spectrometry when growing in pots and supplied with dually labelled L-glutamine compared to wild type plants and LHT1-overexpressing plants. Slopes of regressions between accumulation of 13 C-labelled carbon and 15 N-labelled N were higher for LHT1-overexpressing plants than wild type plants, while plants lacking expression of LHT1 did not display a significant regression between the two isotopes. Uptake of labelled organic N from soil tallied with that of labelled ammonium for wild type plants and LHT1-overexpressing plants but was significantly lower for plants lacking expression of LHT1. When grown on agricultural soil plants lacking expression of LHT1 had the lowest, and plants overexpressing LHT1 the highest C/N ratios and natural δ15 N abundance suggesting their dependence on different N pools. Our data show that LHT1 expression is crucial for plant uptake of organic N from soil.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/genética , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Produtos Agrícolas/metabolismo , Mutação/genética , Micorrizas/metabolismo , Nitrogênio/metabolismo , Solo/química , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Compostos de Amônio/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Isótopos de Carbono , Cromatografia Líquida , Difusão , Genótipo , Glutamina/metabolismo , Espectrometria de Massas , Isótopos de Nitrogênio , Raízes de Plantas/metabolismo , Fatores de Tempo
15.
Glob Chang Biol ; 23(5): 2130-2139, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27490439

RESUMO

Models predicting ecosystem carbon dioxide (CO2 ) exchange under future climate change rely on relatively few real-world tests of their assumptions and outputs. Here, we demonstrate a rapid and cost-effective method to estimate CO2 exchange from intact vegetation patches under varying atmospheric CO2 concentrations. We find that net ecosystem CO2 uptake (NEE) in a boreal forest rose linearly by 4.7 ± 0.2% of the current ambient rate for every 10 ppm CO2 increase, with no detectable influence of foliar biomass, season, or nitrogen (N) fertilization. The lack of any clear short-term NEE response to fertilization in such an N-limited system is inconsistent with the instantaneous downregulation of photosynthesis formalized in many global models. Incorporating an alternative mechanism with considerable empirical support - diversion of excess carbon to storage compounds - into an existing earth system model brings the model output into closer agreement with our field measurements. A global simulation incorporating this modified model reduces a long-standing mismatch between the modeled and observed seasonal amplitude of atmospheric CO2 . Wider application of this chamber approach would provide critical data needed to further improve modeled projections of biosphere-atmosphere CO2 exchange in a changing climate.


Assuntos
Ciclo do Carbono , Mudança Climática , Florestas , Atmosfera , Carbono , Dióxido de Carbono , Clima , Ecossistema
16.
Ecol Appl ; 27(6): 1838-1851, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28464423

RESUMO

We report results from long-term simulated external nitrogen (N) input experiments in three northern Pinus sylvestris forests, two of moderately high and one of moderately low productivity, assessing effects on annual net primary production (NPP) of woody mass and its interannual variation in response to variability in weather conditions. A sigmoidal response of wood NPP to external N inputs was observed in the both higher and lower productivity stands, reaching a maximum of ~65% enhancement regardless of the native site productivity, saturating at an external N input of 4-5 g N·m-2 ·yr-1 . The rate of increase in wood NPP and the N response efficiency (REN , increase in wood NPP per external N input) were maximized at an external N input of ~3 g N·m-2 ·yr-1 , regardless of site productivity. The maximum REN was greater in the higher productivity than the lower productivity stand (~20 vs. ~14 g C/g N). The N-induced enhancement of wood NPP and its REN were, however, markedly contingent on climatic variables. In both of the higher and lower productivity stands, wood NPP increased with growing season precipitation (P), but only up to ~400 mm. The sensitivity of the response to P increased with increasing external N inputs. Increasing growing season temperature (T) somewhat increased the N-induced drought effect, whereas decreasing T reduced the drought effect. These responses of wood NPP infused a large temporal variation to REN , making the use of a fixed value unadvisable. Based on these results, we suggest that regional climate conditions and future climate scenarios should be considered when modeling carbon sequestration in response to N deposition in boreal P. sylvestris, and possibly other forests.


Assuntos
Sequestro de Carbono , Clima , Florestas , Nitrogênio/metabolismo , Pinus sylvestris/metabolismo , Noruega , Estações do Ano , Suécia , Árvores/metabolismo , Madeira/química , Madeira/metabolismo
17.
Ecol Appl ; 27(1): 118-133, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052502

RESUMO

Canopy transpiration (EC ) is a large fraction of evapotranspiration, integrating physical and biological processes within the energy, water, and carbon cycles of forests. Quantifying EC is of both scientific and practical importance, providing information relevant to questions ranging from energy partitioning to ecosystem services, such as primary productivity and water yield. We estimated EC of four pine stands differing in age and growing on sandy soils. The stands consisted of two wide-ranging conifer species: Pinus taeda and Pinus sylvestris, in temperate and boreal zones, respectively. Combining results from these and published studies on all soil types, we derived an approach to estimate daily EC of pine forests, representing a wide range of conditions from 35° S to 64° N latitude. During the growing season and under moist soils, maximum daily EC (ECm ) at day-length normalized vapor pressure deficit of 1 kPa (ECm-ref ) increased by 0.55 ± 0.02 (mean ± SE) mm/d for each unit increase of leaf area index (L) up to L = ~5, showing no sign of saturation within this range of quickly rising mutual shading. The initial rise of ECm with atmospheric demand was linearly related to ECm-ref . Both relations were unaffected by soil type. Consistent with theoretical prediction, daily EC was sensitive to decreasing soil moisture at an earlier point of relative extractable water in loamy than sandy soils. Our finding facilitates the estimation of daily EC of wide-ranging pine forests using remotely sensed L and meteorological data. We advocate an assembly of worldwide sap flux database for further evaluation of this approach.


Assuntos
Florestas , Pinus sylvestris/fisiologia , Pinus taeda/fisiologia , Transpiração Vegetal , Fatores Etários , North Carolina , Solo , Suécia
18.
Ecology ; 97(4): 1012-22, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27220217

RESUMO

The central role that ectomycorrhizal (EM) symbioses play in the structure and function of boreal forests pivots around the common assumption that carbon (C) and nitrogen (N) are exchanged at rates favorable for plant growth. However, this may not always be the case. It has been hypothesized that the benefits mycorrhizal fungi convey to their host plants strongly depends upon the availability of C and N, both of which are rapidly changing as a result of intensified human land use and climate change. Using large-scale shading and N addition treatments, we assessed the independent and interactive effects of changes in C and N supply on the transfer of N in intact EM associations with -15 yr. old Scots pine trees. To assess the dynamics of N transfer in EM symbioses, we added trace amounts of highly enriched 5NO3(-) label to the EM-dominated mor-layer and followed the fate of the 15N label in tree foliage, fungal chitin on EM root tips, and EM sporocarps. Despite no change in leaf biomass, shading resulted in reduced tree C uptake, ca. 40% lower fungal biomass on EM root tips, and greater 15N label in tree foliage compared to unshaded control plots, where more 15N label was found in fungal biomass on EM colonized root tips. Short-term addition of N shifted the incorporation of 15N label from EM fungi to tree foliage, despite no significant changes in below-ground tree C allocation to EM fungi. Contrary to the common assumption that C and N are exchanged at rates favorable for plant growth, our results show for the first time that under N-limited conditions greater C allocation to EM fungi in the field results in reduced, not increased, N transfer to host trees. Moreover, given the ubiquitous nature of mycorrhizal symbioses, our results stress the need to incorporate mycorrhizal dynamics into process-based ecosystem models to better predict forest C and N cycles in light of global climate change.


Assuntos
Carbono/metabolismo , Florestas , Micorrizas/fisiologia , Nitrogênio/metabolismo , Pinus sylvestris/microbiologia , Árvores/microbiologia , Pinus sylvestris/fisiologia , Simbiose , Árvores/fisiologia
19.
Mol Ecol ; 24(10): 2301-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25809088

RESUMO

Molecular ecology is poised to tackle a host of interesting questions in the coming years. The Arctic provides a unique and rapidly changing environment with a suite of emerging research needs that can be addressed through genetics and genomics. Here we highlight recent research on boreal and tundra ecosystems and put forth a series of questions related to plant and microbial responses to climate change that can benefit from technologies and analytical approaches contained within the molecular ecologist's toolbox. These questions include understanding (i) the mechanisms of plant acquisition and uptake of N in cold soils, (ii) how these processes are mediated by root traits, (iii) the role played by the plant microbiome in cycling C and nutrients within high-latitude ecosystems and (iv) plant adaptation to extreme Arctic climates. We highlight how contributions can be made in these areas through studies that target model and nonmodel organisms and emphasize that the sequencing of the Populus and Salix genomes provides a valuable resource for scientific discoveries related to the plant microbiome and plant adaptation in the Arctic. Moreover, there exists an exciting role to play in model development, including incorporating genetic and evolutionary knowledge into ecosystem and Earth System Models. In this regard, the molecular ecologist provides a valuable perspective on plant genetics as a driver for community biodiversity, and how ecological and evolutionary forces govern community dynamics in a rapidly changing climate.


Assuntos
Mudança Climática , Florestas , Genômica , Tundra , Adaptação Biológica , Regiões Árticas , Ciclo do Carbono , Temperatura Baixa , Genoma de Planta , Microbiota , Nitrogênio/metabolismo , Ciclo do Nitrogênio , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plantas/genética , Plantas/metabolismo , Plantas/microbiologia , Populus/genética , Salix/genética
20.
New Phytol ; 203(2): 657-666, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24824576

RESUMO

Ectomycorrhizal symbiosis is omnipresent in boreal forests, where it is assumed to benefit plant growth. However, experiments show inconsistent benefits for plants and volatility of individual partnerships, which calls for a re-evaluation of the presumed role of this symbiosis. We reconcile these inconsistencies by developing a model that demonstrates how mycorrhizal networking and market mechanisms shape the strategies of individual plants and fungi to promote symbiotic stability at the ecosystem level. The model predicts that plants switch abruptly from a mixed strategy with both mycorrhizal and nonmycorrhizal roots to a purely mycorrhizal strategy as soil nitrogen availability declines, in agreement with the frequency distribution of ectomycorrhizal colonization intensity across a wide-ranging data set. In line with observations in field-scale isotope labeling experiments, the model explains why ectomycorrhizal symbiosis does not alleviate plant nitrogen limitation. Instead, market mechanisms may generate self-stabilization of the mycorrhizal strategy via nitrogen depletion feedback, even if plant growth is ultimately reduced. We suggest that this feedback mechanism maintains the strong nitrogen limitation ubiquitous in boreal forests. The mechanism may also have the capacity to eliminate or even reverse the expected positive effect of rising CO2 on tree growth in strongly nitrogen-limited boreal forests.


Assuntos
Florestas , Micorrizas , Nitrogênio/metabolismo , Simbiose , Ecologia , Retroalimentação Fisiológica , Modelos Teóricos , Desenvolvimento Vegetal , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA