RESUMO
Immune cells experience large cell shape changes during environmental patrolling because of the physical constraints that they encounter while migrating through tissues. These cells can adapt to such deformation events using dedicated shape-sensing pathways. However, how shape sensing affects immune cell function is mostly unknown. Here, we identify a shape-sensing mechanism that increases the expression of the chemokine receptor CCR7 and guides dendritic cell migration from peripheral tissues to lymph nodes at steady state. This mechanism relies on the lipid metabolism enzyme cPLA2, requires nuclear envelope tensioning and is finely tuned by the ARP2/3 actin nucleation complex. We also show that this shape-sensing axis reprograms dendritic cell transcription by activating an IKKß-NF-κB-dependent pathway known to control their tolerogenic potential. These results indicate that cell shape changes experienced by immune cells can define their migratory behavior and immunoregulatory properties and reveal a contribution of the physical properties of tissues to adaptive immunity.
Assuntos
Movimento Celular , Células Dendríticas , Homeostase , Linfonodos , Camundongos Endogâmicos C57BL , Receptores CCR7 , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Linfonodos/imunologia , Linfonodos/citologia , Receptores CCR7/metabolismo , Camundongos , Movimento Celular/imunologia , Forma Celular , NF-kappa B/metabolismo , Camundongos Knockout , Transdução de Sinais/imunologia , Quinase I-kappa B/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismoRESUMO
Although mutations leading to a compromised nuclear envelope cause diseases such as muscular dystrophies or accelerated aging, the consequences of mechanically induced nuclear envelope ruptures are less known. Here, we show that nuclear envelope ruptures induce DNA damage that promotes senescence in non-transformed cells and induces an invasive phenotype in human breast cancer cells. We find that the endoplasmic reticulum (ER)-associated exonuclease TREX1 translocates into the nucleus after nuclear envelope rupture and is required to induce DNA damage. Inside the mammary duct, cellular crowding leads to nuclear envelope ruptures that generate TREX1-dependent DNA damage, thereby driving the progression of in situ carcinoma to the invasive stage. DNA damage and nuclear envelope rupture markers were also enriched at the invasive edge of human tumors. We propose that DNA damage in mechanically challenged nuclei could affect the pathophysiology of crowded tissues by modulating proliferation and extracellular matrix degradation of normal and transformed cells.
Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Dano ao DNA , Exodesoxirribonucleases/metabolismo , Membrana Nuclear/metabolismo , Fosfoproteínas/metabolismo , Animais , Linhagem Celular , Senescência Celular , Colágeno/metabolismo , Progressão da Doença , Feminino , Humanos , Camundongos , Invasividade Neoplásica , Membrana Nuclear/ultraestrutura , Proteólise , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The integrity of the nuclear envelope (NE) is essential for maintaining the structural stability of the nucleus. Rupture of the NE has been frequently observed in cancer cells, especially in the context of mechanical challenges, such as physical confinement and migration. However, spontaneous NE rupture events, without any obvious physical challenges to the cell, have also been described. The molecular mechanism(s) of these spontaneous NE rupture events remain to be explored. Here, we show that DNA damage and subsequent ATR activation leads to NE rupture. Upon DNA damage, lamin A/C is phosphorylated in an ATR-dependent manner, leading to changes in lamina assembly and, ultimately, NE rupture. In addition, we show that cancer cells with intrinsic DNA repair defects undergo frequent events of DNA-damage-induced NE rupture, which renders them extremely sensitive to further NE perturbations. Exploiting this NE vulnerability could provide a new angle to complement traditional, DNA-damage-based chemotherapy.
Assuntos
Lamina Tipo A , Membrana Nuclear , Membrana Nuclear/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Fosforilação , Dano ao DNA , DNA/metabolismo , Núcleo Celular/metabolismoRESUMO
The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rings. The chronic strains and stresses associated with unjamming together with the reduction of Lamin B1 levels eventually result in DNA damage and nuclear envelope ruptures, with the release of cytosolic DNA that activates a cGAS-STING (cyclic GMP-AMP synthase-signalling adaptor stimulator of interferon genes)-dependent cytosolic DNA response gene program. This mechanically driven transcriptional rewiring ultimately alters the cell state, with the emergence of malignant traits, including epithelial-to-mesenchymal plasticity phenotypes and chemoresistance in invasive breast carcinoma.
Assuntos
Actinas , Neoplasias , DNA , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Citosol/metabolismo , Transdução de SinaisRESUMO
Single cells migrate in a myriad of physiological contexts, such as tissue patrolling by immune cells, and during neurogenesis and tissue remodeling, as well as in metastasis, the spread of cancer cells. To understand the basic principles of single-cell migration, a reductionist approach can be taken. This aims to control and deconstruct the complexity of different cellular microenvironments into simpler elementary constrains that can be recombined together. This approach is the cell microenvironment equivalent of in vitro reconstituted systems that combine elementary molecular players to understand cellular functions. In this Cell Science at a Glance article and accompanying poster, we present selected experimental setups that mimic different events that cells undergo during migration in vivo These include polydimethylsiloxane (PDMS) devices to deform whole cells or organelles, micro patterning, nano-fabricated structures like grooves, and compartmentalized collagen chambers with chemical gradients. We also outline the main contribution of each technique to the understanding of different aspects of single-cell migration.
Assuntos
Bioensaio , Movimento Celular , Matriz Extracelular/metabolismo , Microfluídica/métodos , Análise de Célula Única/métodos , Microambiente Celular/fisiologia , Colágeno/química , Dimetilpolisiloxanos/química , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Matriz Extracelular/ultraestrutura , Humanos , Microtecnologia/métodos , Modelos Biológicos , Mimetismo Molecular , Análise de Célula Única/instrumentaçãoRESUMO
The nucleus has been viewed as a passenger during cell migration that functions merely to protect the genome. However, increasing evidence shows that the nucleus is an active organelle, constantly sensing the surrounding environment and translating extracellular mechanical inputs into intracellular signaling. The nuclear envelope has a large membrane reservoir which serves as a buffer for mechanical inputs as it unfolds without increasing its tension. In contrast, when cells cope with mechanical strain, such as migration through solid tumors or dense interstitial spaces, the nuclear envelope folds stretch, increasing nuclear envelope tension and sometimes causing rupture. Different degrees of nuclear envelope tension regulate cellular behaviors and functions, especially in cells that move and grow within dense matrices. The crosstalk between extracellular mechanical inputs and the cell nucleus is a critical component in the modulation of cell function of cells that navigate within packed microenvironments. Moreover, there is a link between regimes of nuclear envelope unfolding and different cellular behaviors, from orchestrated signaling cascades to cellular perturbations and damage.
Le noyau a longtemps été considéré comme un passager lors de la migration cellulaire, servant simplement à protéger le génome. Cependant, de plus en plus de preuves montrent que le noyau est un organite actif, qui sonde le milieu environnant et traduit les entrées mécaniques extracellulaires en signalisation intracellulaire. L'enveloppe nucléaire possède un grand réservoir membranaire qui sert de tampon face aux entrées mécaniques en se dépliant sans augmenter sa tension. En revanche, lorsque les cellules font face à des contraintes mécaniques, telles que la migration au travers de tumeurs solides ou despaces interstitiels denses, les plis de l'enveloppe nucléaire s'étirent, augmentant sa tension et provoquant parfois sa rupture. Différents degrés de tension de l'enveloppe nucléaire régulent les comportements et les fonctions cellulaires, en particulier des cellules qui se déplacent et se développent dans des matrices denses. La signalisation croisée entre les entrées mécaniques extracellulaires et le noyau cellulaire sont des composants essentiels dans la modulation de la fonction des cellules qui naviguent dans des microenvironnements encombrés. De plus, il existe un lien entre les régimes de déploiement de l'enveloppe nucléaire et les différents comportements cellulaires, allant des cascades de signalisation jusquaux perturbations et dommages cellulaires.
Assuntos
Neoplasias , Membrana Nuclear , Humanos , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Membrana Nuclear/patologia , Movimento Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Microambiente TumoralRESUMO
Aging is characterized by gradual immune dysfunction and increased disease risk. Genomic instability is considered central to the aging process, but the underlying mechanisms of DNA damage are insufficiently defined. Cells in confined environments experience forces applied to their nucleus, leading to transient nuclear envelope rupture (NER) and DNA damage. Here, we show that Lamin A/C protects lung alveolar macrophages (AMs) from NER and hallmarks of aging. AMs move within constricted spaces in the lung. Immune-specific ablation of lamin A/C results in selective depletion of AMs and heightened susceptibility to influenza virus-induced pathogenesis and lung cancer growth. Lamin A/C-deficient AMs that persist display constitutive NER marks, DNA damage and p53-dependent senescence. AMs from aged wild-type and from lamin A/C-deficient mice share a lysosomal signature comprising CD63. CD63 is required to limit damaged DNA in macrophages. We propose that NER-induced genomic instability represents a mechanism of aging in AMs.
Assuntos
Lamina Tipo A , Macrófagos Alveolares , Animais , Camundongos , Lamina Tipo A/genética , Membrana Nuclear , Pulmão , Envelhecimento/genética , Instabilidade GenômicaRESUMO
During cell growth and motility in crowded tissues or interstitial spaces, cells must integrate multiple physical and biochemical environmental inputs. After a number of recent studies, the view of the nucleus as a passive object that cells have to drag along has become obsolete, placing the nucleus as a central player in sensing some of these inputs. In the present review, we will focus on changes in nuclear shape caused by external and internal forces. Depending on their magnitude, nuclear deformations can generate signaling events that modulate cell behavior and fate, or be a source of perturbations or even damage, having detrimental effects on cellular functions. On very large deformations, nuclear envelope rupture events become frequent, leading to uncontrolled nucleocytoplasmic mixing and DNA damage. We will also discuss the consequences of repeated compromised nuclear integrity, which can trigger DNA surveillance mechanisms, with critical consequences to cell fate and tissue homeostasis.
Assuntos
Núcleo Celular , Membrana Nuclear , Dano ao DNA , Transdução de SinaisRESUMO
Although textbook pictures depict the cell nucleus as a simple ovoid object, it is now clear that it adopts a large variety of shapes in tissues. When cells deform, because of cell crowding or migration through dense matrices, the nucleus is subjected to large constraints that alter its shape. In this review, we discuss recent studies related to nuclear fragility, focusing on the surprising finding that the nuclear envelope can form blebs. Contrary to the better-known plasma membrane blebs, nuclear blebs are unstable and almost systematically lead to nuclear envelope opening and uncontrolled nucleocytoplasmic mixing. They expand, burst, and repair repeatedly when the nucleus is strongly deformed. Although blebs are a major source of nuclear instability, they are poorly understood so far, which calls for more in-depth studies of these structures.
Assuntos
Núcleo Celular , Membrana Nuclear , Membrana Celular , HumanosRESUMO
Cytosolic DNA activates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS), an innate immune sensor pivotal in anti-microbial defense, senescence, auto-immunity, and cancer. cGAS is considered to be a sequence-independent DNA sensor with limited access to nuclear DNA because of compartmentalization. However, the nuclear envelope is a dynamic barrier, and cGAS is present in the nucleus. Here, we identify determinants of nuclear cGAS localization and activation. We show that nuclear-localized cGAS synthesizes cGAMP and induces innate immune activation of dendritic cells, although cGAMP levels are 200-fold lower than following transfection with exogenous DNA. Using cGAS ChIP-seq and a GFP-cGAS knockin mouse, we find nuclear cGAS enrichment on centromeric satellite DNA, confirmed by imaging, and to a lesser extent on LINE elements. The non-enzymatic N-terminal domain of cGAS determines nucleo-cytoplasmic localization, enrichment on centromeres, and activation of nuclear-localized cGAS. These results reveal a preferential functional association of nuclear cGAS with centromeres.
Assuntos
Centrômero/enzimologia , Células Dendríticas/enzimologia , Células Dendríticas/imunologia , Imunidade Inata/genética , Nucleotidiltransferases/metabolismo , Adulto , Animais , Linhagem Celular , Núcleo Celular/enzimologia , DNA , DNA Satélite , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/química , Domínios ProteicosRESUMO
Thanks to the power of Drosophila genetics, this animal model has been a precious tool for scientists to uncover key processes associated to innate immunity. The fly immune system relies on a population of macrophage-like cells, also referred to as hemocytes, which are highly migratory and phagocytic, and can easily be followed in vivo. These cells have shown to play important roles in fly development, both at the embryonic and pupal stages. However, there is no robust assay for the study of hemocyte migration in vitro, which limits our understanding of the molecular mechanisms involved. Here, we contribute to fill this gap by showing that hemocytes adopt a polarized morphology upon ecdysone stimulation, allowing the study of the cytoskeleton rearrangements and organelle reorganization that take place during the first step of cell locomotion.
Assuntos
Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Drosophila melanogaster/fisiologia , Hemócitos/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ecdisona/metabolismo , Hemócitos/metabolismo , Fagocitose/fisiologiaRESUMO
Nuclear pore complexes tightly regulate nucleo-cytoplasmic transport, controlling the nuclear concentration of several transcription factors. In a recent issue of Cell, Elosegui-Artola et al. (2017) show that nuclear deformation modulates the nuclear entry rates of YAP/TAZ via nuclear pore stretching, clarifying how forces affect gene transcription.
Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Fatores de Transcrição/metabolismo , Animais , Humanos , Poro Nuclear/metabolismo , Fosfoproteínas/metabolismoRESUMO
Integrin endocytic recycling is critical for cell migration, yet how recycled integrins assemble into new adhesions is unclear. By synchronizing endocytic disassembly of focal adhesions (FAs), we find that recycled integrins reassemble FAs coincident with their return to the cell surface and dependent on Rab5 and Rab11. Unexpectedly, endocytosed integrins remained in an active but unliganded state in endosomes. FAK and Src kinases co-localized with endocytosed integrin and were critical for FA reassembly by regulating integrin activation and recycling, respectively. FAK sustained the active integrin conformation by maintaining talin association with Rab11 endosomes in a type I phosphatidylinositol phosphate kinase (PIPKIγ)-dependent manner. In migrating cells, endocytosed integrins reassembled FAs polarized towards the leading edge, and this polarization required FAK. These studies identify unanticipated roles for FA proteins in maintaining endocytosed integrin in an active conformation. We propose that the conformational memory of endocytosed integrin enhances polarized reassembly of FAs to enable directional cell migration.
Assuntos
Polaridade Celular , Endocitose , Quinase 1 de Adesão Focal/metabolismo , Adesões Focais/metabolismo , Integrina alfa5/metabolismo , Integrina beta1/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Talina/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular , Fibronectinas/metabolismo , Imunofluorescência , Humanos , Immunoblotting , Camundongos , Microtúbulos/metabolismo , Células NIH 3T3 , Transdução de Sinais , Vinculina/metabolismo , Quinases da Família src/metabolismoRESUMO
Selectively stabilized microtubules (MTs) form in the lamella of fibroblasts and contribute to cell migration. A Rho-mDia-EB1 pathway regulates the formation of stable MTs, yet how selective stabilization of MTs is achieved is unknown. Kinesin activity has been implicated in selective MT stabilization and a number of kinesins regulate MT dynamics both in vitro and in cells. Here, we show that the mammalian homolog of Xenopus XKLP1, Kif4, is both necessary and sufficient for the induction of selective MT stabilization in fibroblasts. Kif4 localized to the ends of stable MTs and participated in the Rho-mDia-EB1 MT stabilization pathway since Kif4 depletion blocked mDia- and EB1-induced selective MT stabilization and EB1 was necessary for Kif4 induction of stable MTs. Kif4 and EB1 interacted in cell extracts, and binding studies revealed that the tail domain of Kif4 interacted directly with the N-terminal domain of EB1. Consistent with its role in regulating formation of stable MTs in interphase cells, Kif4 knockdown inhibited migration of cells into wounded monolayers. These data identify Kif4 as a novel factor in the Rho-mDia-EB1 MT stabilization pathway and cell migration.