Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768583

RESUMO

Adipose tissue metabolism under hyperglycemia results in Type II diabetes (T2D). To better understand how the adipocytes function, we used a cell culture that was exposed to glycation by adding intermediate carbonyl products, which caused chemical cross-linking and led to the formation of advanced glycation end products (AGEs). The AGEs increased the cells and their niche stiffness and altered the rheological viscoelastic properties of the cultured cells leading to altered cell signaling. The AGEs formed concomitant with changes in protein structure, quantified by spectroscopy using the 8-ANS and Nile red probes. The AGE effects on adipocyte differentiation were viewed by imaging and evidenced in a reduction in cellular motility and membrane dynamics. Importantly, the alteration led to reduced adipogenesis, that is also measured by qPCR for expression of adipogenic genes and cell signaling. The evidence of alteration in the plasma membrane (PM) dynamics (measured by CTxB binding and NP endocytosis), also led to the impairment of signal transduction and a decrease in AKT phosphorylation, which hindered downstream insulin signaling. The study, therefore, presents a new interpretation of how AGEs affect the cell niche, PM stiffness, and cell signaling leading to an impairment of insulin signaling.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais , Adipócitos/metabolismo , Insulina/metabolismo
2.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499567

RESUMO

Adipose tissue is a complex organ composed of various cell types and an extracellular matrix (ECM). The visceral adipose tissue (VAT) is dynamically altered in response to nutritional regimens that lead to local cues affecting the cells and ECM. The adipocytes are in conjunction with the surrounding ECM that maintains the tissue's niche, provides a scaffold for cells and modulates their signaling. In this study, we provide a better understanding of the crosstalk between nutritional regimens and the ECM's stiffness. Histological analyses showed that the adipocytes in mice fed a high-fat diet (HFD) were increased in size, while the ECM was also altered with changes in mass and composition. HFD-fed mice exhibited a decrease in elastin and an increase in collagenous proteins. Rheometer measurements revealed a stiffer ECM in whole tissue (nECM) and decellularized (deECM) in HFD-fed animals. These alterations in the ECM regulate cellular activity and influence their metabolic function. HFD-fed mice expressed high levels of the receptor for advanced-glycation-end-products (RAGE), indicating that AGEs might play a role in these processes. The cells also exhibited an increase in phosphoserine332 of IRS-1, a decrease in the GLUT4 transporter levels at the cells' membrane, and a consequent reduction in insulin sensitivity. These results show how alterations in the stiffness of ECM proteins can affect the mechanical cues transferred to adipocytes and, thereby, influence the adipocytes' functionality, leading to metabolic disorders.


Assuntos
Tecido Adiposo , Resistência à Insulina , Camundongos , Animais , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Gordura Intra-Abdominal/metabolismo , Transdução de Sinais , Camundongos Endogâmicos C57BL
3.
J Cell Physiol ; 234(4): 3850-3863, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30191963

RESUMO

Obesity has become one of the leading pathophysiologic disorders in recent years. Adipose tissue is the main tissue related to obesity and is known to play a role in various physiological complications, including type 2 diabetes. To better understand how the fat tissue develops, we used an in vitro live cell imaging system to quantify the adipogenesis by means of nondestructive digital imaging to monitor the accumulation of intracellular lipid droplets (LDs), a hallmark of adipogenesis, from the macro- to the micro-scale. Analyzing the cells' shape at the single-cell level allows to quantify the cells' shape change from a fibroblast to spherical morphology, indicating the start of adipogenesis. To reveal the molecular alterations, we applied a proteomic approach using high-resolution mass spectrometry of the proliferation, confluent fibroblasts and of adipocytes. During this process, we noted the reorganization of the cells' extracellular matrix (ECM) network microenvironment from fibrillary collagen types I, III and V to collagens IV and VI, which affected the cells niche. The changes in ECM are translated for cytoskeleton remodeling according to cell fate-determining mechanisms. We quantified the cytoskeleton rearrangement of long oriented actin fibers or short cortical and disorganized fibers, associated with LDs accumulation in adipocytes. Developing in vitro models and analytical methods enable us to study differentiation into adipocytes that will advance our understanding regarding the niche conditions that affect adipogenesis. Consequently, this will enable the development of new modalities to prevent obesity and its deleterious outcomes and to develop potential treatments to battle pathophysiology-related diseases.


Assuntos
Adipócitos/metabolismo , Adipogenia , Forma Celular , Microambiente Celular , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Citoesqueleto de Actina/metabolismo , Proliferação de Células , Gotículas Lipídicas/metabolismo , Mapas de Interação de Proteínas , Proteômica , Transdução de Sinais , Análise de Célula Única , Fatores de Tempo
4.
ACS Biomater Sci Eng ; 7(7): 3179-3189, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34143596

RESUMO

Structural alterations in proteins have a significant impact on their function and body physiology. Glycation via nonenzymatic forms of cross-linking leads to proteins' conformational changes, the macromolecule being recognized as a stable fibrillary structure, oligomerization, and becoming advanced glycation end products (AGEs). Protein that undergoes glycation-related modifications, namely, ß-sheet enriched structural changes, are recognized as amyloid. In the current study, we characterized a single protein modified in vitro under physiological conditions to represent a protein glycation model. The glycation altered the helical conformation of serum albumin (SA) and promoted the formation of a ß-sheet enriched with amyloid fibrils detected at multidimensional levels. The nanoscale resolution by spectroscopy in the presence of thioflavin-T (ThT) and 8-anilinonaphthalene-1-sulfonic acid (8-ANS) showed binding of the fibrils formed in the presence of glucose (GLU) and the carbonyl metabolites methylglyoxal (MGO) and glycolaldehyde (GAD). In the presence of MGO and GAD, the SA becomes insoluble aggregates, demonstrated by TEM microscopy and dynamic light scattering (DLS). The protein oligomerization was visualized when separated via SDS gel electrophoresis and mass photometry (MP) assays. Following the glycation, eventually, the material polymerized and became stiffer. The level of stiffness was analyzed by a rheometer that revealed a quick alteration under MGO and GAD. This is the first study to combine multiple spectroscopy assays, imaging, and rheology measurements of SA and to demonstrate a resolution on a nanoscale structural toward better resolution of the conformational changes of glycated SA, oligomerization, and protein aggregations under physiological conditions.


Assuntos
Produtos Finais de Glicação Avançada , Aldeído Pirúvico , Amiloide , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Albumina Sérica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA