Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
Front Aging ; 3: 1005322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313181

RESUMO

Despite efficient repair, DNA damage inevitably accumulates with time affecting proper cell function and viability, thereby driving systemic aging. Interventions that either prevent DNA damage or enhance DNA repair are thus likely to extend health- and lifespan across species. However, effective genome-protecting compounds are largely lacking. Here, we use Ercc1 Δ/- and Xpg -/- DNA repair-deficient mutants as two bona fide accelerated aging mouse models to test propitious anti-aging pharmaceutical interventions. Ercc1 Δ/- and Xpg -/- mice show shortened lifespan with accelerated aging across numerous organs and tissues. Previously, we demonstrated that a well-established anti-aging intervention, dietary restriction, reduced DNA damage, and dramatically improved healthspan, strongly extended lifespan, and delayed all aging pathology investigated. Here, we further utilize the short lifespan and early onset of signs of neurological degeneration in Ercc1 Δ/- and Xpg -/- mice to test compounds that influence nutrient sensing (metformin, acarbose, resveratrol), inflammation (aspirin, ibuprofen), mitochondrial processes (idebenone, sodium nitrate, dichloroacetate), glucose homeostasis (trehalose, GlcNAc) and nicotinamide adenine dinucleotide (NAD+) metabolism. While some of the compounds have shown anti-aging features in WT animals, most of them failed to significantly alter lifespan or features of neurodegeneration of our mice. The two NAD+ precursors; nicotinamide riboside (NR) and nicotinic acid (NA), did however induce benefits, consistent with the role of NAD+ in facilitating DNA damage repair. Together, our results illustrate the applicability of short-lived repair mutants for systematic screening of anti-aging interventions capable of reducing DNA damage accumulation.

3.
Front Aging ; 22021.
Artigo em Inglês | MEDLINE | ID: mdl-35474946

RESUMO

Decline of immune function during aging has in part been ascribed to the accumulation of regulatory T cells (Tregs) and decreased T-cell responses with age. Aside from changes to T cells that occur over a lifetime, the impact of intracellular aging processes such as compromised DNA repair on T cells remains incompletely defined. Here we aimed to define the impact of compromised DNA repair on T-cell phenotype and responsiveness by studying T cells from mice with a deficiency in their DNA excision-repair gene Ercc1. These Ercc1 mutant (Ercc1 -/Δ7 ) mice show accumulation of nuclear DNA damage resulting in accelerated aging. Similarly to wild-type aged mice, Ercc1 -/Δ7 mice accumulated Tregs with reduced CD25 and increased PD-1 expression among their naive T cells. Ercc1-deficiency limited the capacity of Tregs, helper T cells, and cytotoxic T cells to proliferate and upregulate CD25 in response to T-cell receptor- and IL-2-mediated stimulation. The recent demonstration that the mammalian target of rapamycin (mTOR) may impair DNA repair lead us to hypothesize that changes induced in the T-cell population by compromised DNA repair may be slowed down or reversed by blocking mTOR with rapamycin. In vivo dietary treatment of Ercc1 -/Δ7 mice with rapamycin did not reduce Treg levels, but highly increased the proportion of CD25+ and PD-1+ memory Tregs instead. Our study elucidates that compromised DNA repair promotes the accumulation of Tregs with an aging-related phenotype and causes reduced T-cell responsiveness, which may be independent of mTOR activation.

4.
Aging Cell ; 20(2): e13302, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33484480

RESUMO

Dietary restriction (DR) and rapamycin extend healthspan and life span across multiple species. We have recently shown that DR in progeroid DNA repair-deficient mice dramatically extended healthspan and trippled life span. Here, we show that rapamycin, while significantly lowering mTOR signaling, failed to improve life span nor healthspan of DNA repair-deficient Ercc1∆/- mice, contrary to DR tested in parallel. Rapamycin interventions focusing on dosage, gender, and timing all were unable to alter life span. Even genetically modifying mTOR signaling failed to increase life span of DNA repair-deficient mice. The absence of effects by rapamycin on P53 in brain and transcription stress in liver is in sharp contrast with results obtained by DR, and appoints reducing DNA damage and transcription stress as an important mode of action of DR, lacking by rapamycin. Together, this indicates that mTOR inhibition does not mediate the beneficial effects of DR in progeroid mice, revealing that DR and rapamycin strongly differ in their modes of action.


Assuntos
Restrição Calórica , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Longevidade , Animais , Reparo do DNA , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Sirolimo/farmacologia
5.
PLoS One ; 11(2): e0149576, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26894582

RESUMO

Pertussis, caused by infection with the gram negative B. pertussis bacterium, is a serious respiratory illness that can last for months. While B. pertussis infection rates are estimated between 1-10% in the general population, notifications of symptomatic pertussis only comprise 0.01-0.1% indicating that most individuals clear B. pertussis infections without developing (severe) clinical symptoms. In this study we investigated whether genetic risk factors are involved in the development of symptomatic pertussis upon B. pertussis infection. Single-nucleotide polymorphisms (SNPs) in candidate genes, MBL2, IL17A, TNFα, VDR, and IL10 were genotyped in a unique Dutch cohort of symptomatic clinically confirmed (ex-)pertussis patients and in a Dutch population cohort. Of the seven investigated SNPs in five genes, a polymorphism in the Vitamin D receptor (VDR) gene (rs10735810) was associated with pertussis. The VDR major allele and its homozygous genotype were more present in the symptomatic pertussis patient cohort compared to the control population cohort. Interestingly, the VDR major allele correlated also with the duration of reported pertussis symptoms. Vitamin D3 (VD3) and VDR are important regulators of immune activation. Altogether, these findings suggest that polymorphisms in the VDR gene may affect immune activation and the clinical outcome of B. pertussis infection.


Assuntos
Predisposição Genética para Doença , Receptores de Calcitriol/genética , Coqueluche/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
6.
PLoS One ; 9(4): e93568, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24740260

RESUMO

Ku80 and DNA-PKCS are both involved in the repair of double strand DNA breaks via the nonhomologous end joining (NHEJ) pathway. While ku80-/- mice exhibit a severely reduced lifespan and size, this phenotype is less pronounced in dna-pkcs-/- mice. However, these observations are based on independent studies with varying genetic backgrounds. Here, we generated ku80-/-, dna-pkcs-/- and double knock out mice in a C57Bl6/J*FVB F1 hybrid background and compared their lifespan, end of life pathology and mutation frequency in liver and spleen using a lacZ reporter. Our data confirm that inactivation of Ku80 and DNA-PKCS causes reduced lifespan and bodyweights, which is most severe in ku80-/- mice. All mutant mice exhibited a strong increase in lymphoma incidence as well as other aging-related pathology (skin epidermal and adnexal atrophy, trabacular bone reduction, kidney tubular anisokaryosis, and cortical and medullar atrophy) and severe lymphoid depletion. LacZ mutation frequency analysis did not show strong differences in mutation frequencies between knock out and wild type mice. The ku80-/- mice had the most severe phenotype and the Ku80-mutation was dominant over the DNA-PKCS-mutation. Presumably, the more severe degenerative effect of Ku80 inactivation on lifespan compared to DNA-PKCS inactivation is caused by additional functions of Ku80 or activity of free Ku70 since both Ku80 and DNA-PKCS are essential for NHEJ.


Assuntos
Envelhecimento/genética , Antígenos Nucleares/genética , Reparo do DNA por Junção de Extremidades/genética , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Animais , Antígenos Nucleares/fisiologia , Peso Corporal/genética , Dano ao DNA , Proteína Quinase Ativada por DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Feminino , Técnicas de Inativação de Genes , Autoantígeno Ku , Longevidade/genética , Masculino , Camundongos Endogâmicos C57BL , Proteínas Nucleares/fisiologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA