Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 63(29): 9995-10013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35611888

RESUMO

In the world of highly processed foods, special attention is drawn to the nutrient composition and safety of consumed food products. Foods fortified with probiotic bacteria confer beneficial effects on human health and are categorized as functional foods. The salubrious activities of probiotics include the synthesis of vital bioactives, prevention of inflammatory diseases, anticancerous, hypocholesterolemic, and antidiarrheal effects. Soy foods are exemplary delivery vehicles for probiotics and prebiotics and there are diverse strategies to enhance their functionality like employing mixed culture fermentation, engineering probiotics, and incorporating prebiotics in fermented soy foods. High potential is ascribed to the concurrent use of probiotics and prebiotics in one product, termed as "synbiotics," which implicates synergy, in which a prebiotic ingredient particularly favors the growth and activity of a probiotic micro-organism. The insights on emended bioactive profile, metabolic role, and potential health benefits of advanced soy-based probiotic and synbiotic hold a promise which can be profitably implemented to meet consumer needs. This article reviews the available knowledge about strategies to enhance the nutraceutical potential, mechanisms, and health-promoting effects of advanced soy-based probiotics. Traditional fermentation merged with diverse strategies to improve the efficiency and health benefits of probiotics considered vital, are also discussed.


Assuntos
Alimentos Fermentados , Probióticos , Alimentos de Soja , Simbióticos , Humanos , Prebióticos
2.
Curr Microbiol ; 80(9): 277, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434070

RESUMO

The presence of small amount of soluble forms of Phosphorus (P), Potassium (K) and Zinc (Zn) in most soils is one of the limiting factors for agronomic crop production. The current study focuses on Macrotyloma uniflorum (horse gram or gahat), the most commonly cultivated crop in Uttarakhand. The current initiative and study were started, because there is a little information available on the impact of co-inoculation of beneficial fungi on crops in agricultural fields. Aspergillus niger K7 and Penicillium chrysogenum K4 were isolated and selected for the study on the basis of in vitro P, K and Zn-solubilizing activity. The solubilizing efficiency of K4 strain was 140% and K7 was 173.9% for P. However, the solubilizing efficiencies of K4 and K7 were 160% and 138.46% for Zn and 160% and 466% for K, respectively. The field trials were performed for two consecutive years, and growth and yield related parameters were measured for evaluation of the effect of P, K and Zn-solubilizing fungal strains on the crop. All the treatments showed a significant (P < 0.05) increase in growth and yield of M. uniflorum plants over uninoculated control; however, the best treatment was found to be soil inoculated with P. chrysogenum K4 + A. niger K7 in which the yield was enhanced by 71% over control. Thus, the co-inoculation of K4 and K7 strains showed a great potential to improve the growth and yield of plants. Both the fungal strains simultaneously solubilized three important nutritional elements in soil, which is a rare trait. Moreover, the capacity of these fungal strains to enhance the plant root nodulation and microbial count in soil makes the co-inoculation practice quite beneficial for sustainable agriculture.


Assuntos
Asteraceae , Fabaceae , Plantas Medicinais , Agricultura , Aspergillus niger
3.
Arch Microbiol ; 204(1): 82, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34958412

RESUMO

Gamma amino butyric acid (GABA) is a chemical messenger that plays a significant role in muscle relaxation and brain health. Certain lactic acid bacteria (LAB) produce significant levels of GABA and thus act as potential psychobiotic cultures. In the present study, LAB were isolated from non-rhizospheric soil sample of Syzygium cumini (Black plum). A total of 57 LAB were isolated on the basis of their morphological and acid producing characteristic on de Man Rogosa Sharpe (MRS) agar. Only seven isolates were found to produce GABA (0.09-1.13 gL-1) in MRS broth and were identified as Lactococcus. However, L. lactis LP-68 produced highest amount of GABA and was selected for further optimization of culture conditions (pH, temperature and MSG) by response surface methodology (RSM). The optimization resulted in approximately four-fold increase in GABA production (4.11 gL-1). The results indicate that the L. lactis LP-68 can be used as starter culture for production of GABA-enriched functional foods.


Assuntos
Lactococcus lactis , Prunus domestica , Syzygium , Humanos , Solo , Ácido gama-Aminobutírico
4.
Arch Microbiol ; 203(5): 2393-2409, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33661314

RESUMO

Harnessing the benefits of plant-microbe interactions towards better nutrient mobilization and plant growth is an important challenge for agriculturists globally. In our investigation, the focus was towards analyzing the soil-plant-environment interactions of cyanobacteria-based formulations (Anabaena-Nostoc consortium, BF1-4 and Anabaena-Trichoderma biofilm, An-Tr) as inoculants for ten maize genotypes (V1-V10). Field experimentation using seeds treated with the formulations illustrated a significant increase of 1.3- to 3.8-fold in C-N mobilizing enzyme activities in plants, along with more than five- to six-fold higher values of nitrogen fixation in rhizosphere soil samples. An increase of 22-30% in soil available nitrogen was also observed at flag leaf stage, and 13-16% higher values were also recorded in terms of cob yield of V6 with An-Tr biofilm inoculation. Savings of 30 kg N ha-1 season-1 was indicative of the reduced environmental pollution, due to the use of microbial options. The use of cyanobacterial formulations also enhanced the economic, environmental and energy use efficiency. This was reflected as 37-41% reduced costs lowered GHG emission by 58-68 CO2 equivalents and input energy requirement by 3651-4296 MJ, over the uninoculated control, on hectare basis. This investigation highlights the superior performance of these formulations, not only in terms of efficient C-N mobilization in maize, but also making maize cultivation a more profitable enterprise. Such interactions can be explored as resource-conserving options, for future evaluation across ecologies and locations, particularly in the global climate change scenario.


Assuntos
Inoculantes Agrícolas/fisiologia , Carbono/metabolismo , Cianobactérias/fisiologia , Nitrogênio/metabolismo , Zea mays/crescimento & desenvolvimento , Anabaena/fisiologia , Biofilmes/crescimento & desenvolvimento , Genótipo , Fixação de Nitrogênio , Nostoc/fisiologia , Nutrientes/metabolismo , Desenvolvimento Vegetal , Folhas de Planta , Raízes de Plantas/microbiologia , Rizosfera , Solo/química , Microbiologia do Solo , Trichoderma/fisiologia , Zea mays/microbiologia
5.
Physiol Plant ; 173(1): 394-417, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33724481

RESUMO

Heavy metal pollution in soil and water is a potential threat to human health as it renders food quality substandard. Different biosorbents such as microbial and agricultural biomass have been exploited for heavy metal immobilization in soil and sorptive removal in waters. Biosorption is an effective and sustainable method for heavy metal removal in soil and water, but the inherent challenges are to find cheap, selective, robust, and cost-effective bioadsorbents. Microbial and agricultural biomass and their modified forms such as nanocomposites and carbonaceous materials (viz., biochar, nanobiochar, biocarbon), might be useful for sequestration of heavy metals in soil via adsorption, ion exchange, complexation, precipitation, and enzymatic transformation mechanisms. In this review, potential biosorbents and their metal removal capacity in soil and water are discussed. The microbial adsorbents and modified composites of agricultural biomasses show improved performance, stability, reusability, and effectively immobilize heavy metals from soil and water. In the future, researchers may consider the modified composites, encapsulated biosorbents for soil and water remediation.


Assuntos
Metais Pesados , Poluentes do Solo , Adsorção , Poluição Ambiental , Solo , Água
6.
J Basic Microbiol ; 61(1): 4-14, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32896907

RESUMO

Implementing two-way strategies to enhance the lipid production in Rhodotorula mucilaginosa with the help of metabolic engineering was focused on the overexpression of acetyl coenzyme A carboxylase (ACC1 carboxylase) gene and repression of 3-hydroxy 3-methylglutaryl reductase (HMG-CoA reductase). Using an inducer (sodium citrate) and inhibitor (rosuvastatin), the amounts of biomass, lipid, and carotenoid were estimated. In the presence of inhibitor (200 mM), 62% higher lipid concentration was observed, while 44% enhancement was recorded when inducer (3 mM) was used. A combination of both inhibitor and inducer resulted in a 57% increase in lipid concentration by the oleaginous yeast. These results were again confirmed by real-time polymerase chain reaction by targeting the expression of the genes coding for ACC1 carboxylase and 13-fold increase was recorded in the presence of inducer as compared with control. This combined strategy (inducer and inhibitor use) has been reported for the first time as far as the best of our knowledge. The metabolic engineering strategies reported here will be a powerful approach for the enhanced commercial production of lipids.


Assuntos
Acetil-CoA Carboxilase/genética , Ácidos Graxos/metabolismo , Hidroximetilglutaril-CoA Redutases/genética , Rhodotorula/metabolismo , Biomassa , Carotenoides/metabolismo , Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Engenharia Metabólica , Rhodotorula/efeitos dos fármacos , Rhodotorula/genética , Rhodotorula/crescimento & desenvolvimento , Rosuvastatina Cálcica/farmacologia , Citrato de Sódio/farmacologia
7.
World J Microbiol Biotechnol ; 37(4): 56, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33619649

RESUMO

Methane utilizing bacteria (MUB) are known to inhabit the flooded paddy ecosystem where they play an important role in regulating net methane (CH4) emission. We hypothesize that efficient MUB having plant growth-promoting (PGP) attributes can be used for developing novel bio-inoculant for flooded paddy ecosystem which might not only reduce methane emission but also assist in improving the plant growth parameters. Hence, soil and plant samples were collected from the phyllosphere, rhizosphere, and non-rhizosphere of five rice-growing regions of India at the tillering stage and investigated for efficient methane-oxidizing and PGP bacteria. Based on the monooxygenase activity and percent methane utilization on NMS medium with methane as the sole C source, 123 isolates were identified and grouped phylogenetically into 13 bacteria and 2 yeast genera. Among different regions, a significantly higher number of isolates were obtained from lowland flooded paddy ecosystems of Aduthurai (33.33%) followed by Ernakulum (20.33%) and Brahmaputra valley (19.51%) as compared to upland irrigated regions of Gaya (17.07%) and Varanasi (8.94%). Among sub-samples, a significantly higher number of isolates were found inhabiting the phyllosphere (58.54%) followed by non-rhizosphere (25.20%) and rhizosphere (15.45%). Significantly higher utilization of methane and PGP attributes were observed in 30 isolates belonging to genera Hyphomicrobium, Burkholderia, Methylobacterium, Paenibacillus, Pseudomonas, Rahnella, and Meyerozyma. M. oryzae MNL7 showed significantly better growth with 74.33% of CH4 utilization at the rate of 302.9 ± 5.58 and exhibited half-maximal growth rate, Ks of 1.92 ± 0.092 mg CH4 L-1. Besides the ability to utilize CH4, P. polymyxa MaAL70 possessed PGP attributes such as solubilization of P, K, and Zn, fixation of atmospheric N and production of indole acetic acid (IAA). Both these promising isolates can be explored in the future for developing novel biofertilizers for flooded paddies.


Assuntos
Ecossistema , Metano/farmacologia , Desenvolvimento Vegetal/efeitos dos fármacos , Microbiologia do Solo , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Biodiversidade , Enterobacteriaceae/isolamento & purificação , Índia , Ácidos Indolacéticos , Cinética , Methylobacterium , Fixação de Nitrogênio , Oryza/microbiologia , Paenibacillus polymyxa , Filogenia , Rizosfera , Solo
8.
J Basic Microbiol ; 59(6): 632-644, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30900762

RESUMO

Microbial biofilms are gaining importance in agriculture, due to their multifaceted agronomic benefits and resilience to environmental fluctuations. This study focuses on comparing the influence of single inoculation-Azotobacter chroococcum (Az) or Trichoderma viride (Tv) and their biofilm (Tv-Az), on soil and plant metabolic activities in wheat and cotton grown under Phytotron conditions. Tv-Az proved superior to all the other treatments in terms of better colonisation, plant growth attributes and 10-40% enhanced availability of macronutrients and micronutrients in the soil, over control. Confocal and scanning electron microscopy showed that the cells attached to the root tips initially, followed by their proliferation along the surface of the roots. Soil polysaccharides, proteins and dehydrogenase activity showed several fold enhancement in Tv-Az biofilm inoculated samples. Time course studies revealed that the population of Az and Tv in the rhizoplane and rhizosphere was significantly higher with a 0.14-0.31 log colony-forming unit (CFU) increase in the biofilm-inoculated treatment in both crops. Enhancement in soil biological activities was facilitated by the improved colonisation of the biofilm, due to the synergistic association between Tv and Az. This demonstrates the utility of Tv-Az biofilm as a multifunctional plant growth promoting and soil fertility enhancing option in agriculture.


Assuntos
Azotobacter/fisiologia , Biofilmes/crescimento & desenvolvimento , Gossypium/crescimento & desenvolvimento , Nutrientes/análise , Solo/química , Trichoderma/fisiologia , Triticum/crescimento & desenvolvimento , Inoculantes Agrícolas/crescimento & desenvolvimento , Inoculantes Agrícolas/fisiologia , Disponibilidade Biológica , Gossypium/microbiologia , Nutrientes/farmacocinética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Triticum/microbiologia
9.
J Environ Manage ; 251: 109532, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31542620

RESUMO

The incidence of coliforms in soil and agricultural produce was evaluated in two vegetable crops, namely, cauliflower and eggplant, which were grown using wastewater for irrigation. Field experiment was conducted at Indian Agricultural Research Institute (IARI), New Delhi, India. In the field experiments to irrigate the crop, municipal wastewater was applied through drip system. The filtration of irrigation water was done through sand media, disk media and their combination. The laterals were placed at surface and subsurface of soil. All filtration processes significantly reduced total coliforms (12-20%) and E. coli (15-25%) populations when evaluated against untreated wastewater. The population dynamics of coliforms in soil profiles indicated that the maximum population of E. coli was estimated on the surface of soil profile when using surface drip, which decreased with soil depth under subsurface placement of drip lateral. After crop harvesting, E. coli in the soil reduced until 20 days after the cessation of irrigation and was highly correlated with soil moisture. E. coli and total coliforms availability were noticed on the surface and in the tissues of leaf and fruit, the coliform count is higher on the surface of plants under surface placement of drip lateral. The concentration of coliforms was lower with eggplant in comparison to cauliflower due to the smooth fruit surface of eggplant. Our study reveals the critical role of subsurface drip irrigation in reducing the load of coliform both in the soil and the crop produce ensuring safety of the consumers against health hazards. In another way protect the environment from wastewater disposal and reduce the burden on synthetic fertilizers as well as shrinking freshwater resources.


Assuntos
Verduras , Águas Residuárias , Irrigação Agrícola , Escherichia coli , Incidência , Índia , Solo
10.
Crit Rev Microbiol ; 44(2): 244-257, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28609211

RESUMO

Second generation biofuel production has been appeared as a sustainable and alternative energy option. The ultimate aim is the development of an industrially feasible and economic conversion process of lignocellulosic biomass into biofuel molecules. Since, cellulose is the most abundant biopolymer and also represented as the photosynthetically fixed form of carbon, the efficient hydrolysis of cellulose is the most important step towards the development of a sustainable biofuel production process. The enzymatic hydrolysis of cellulose by suites of hydrolytic enzymes underlines the importance of cellulase enzyme system in whole hydrolysis process. However, the selection of the suitable cellulolytic enzymes with enhanced activities remains a challenge for the biorefinery industry to obtain efficient enzymatic hydrolysis of biomass. The present review focuses on deciphering the novel and effective cellulases from different environmental niches by unculturable metagenomic approaches. Furthermore, a comprehensive functional aspect of cellulases is also presented and evaluated by assessing the structural and catalytic properties as well as sequence identities and expression patterns. This review summarizes the recent development in metagenomics based approaches for identifying and exploring novel cellulases which open new avenues for their successful application in biorefineries.


Assuntos
Biocombustíveis , Bioprospecção/métodos , Celulases/genética , Celulases/metabolismo , Celulose/metabolismo , Metagenoma , Metagenômica/métodos , Bioprospecção/tendências , Microbiologia Ambiental , Metagenômica/tendências
11.
Prep Biochem Biotechnol ; 48(3): 296-302, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29424627

RESUMO

Production of lipid from oleaginous yeast using starch as a carbon source is not a common practice; therefore, the purpose of this investigation was to explore the capability of starch assimilating microbes to produce oil, which was determined in terms of biomass weight, productivity, and lipid yield. Saccharomyces pastorianus, Rhodotorula mucilaginosa, Rhodotorula glutinis, and fungal isolate Ganoderma wiiroense were screened for the key parameters. The optimization was also performed by one-factor-at-a-time approach. Considering the specific yield of lipid and cell dry weight yield, R. glutinis and R. mucilaginosa showed superiority over other strains. G. wiiroense, a new isolate, would also be a promising strain for starch waste utilization in terms of extracellular and intracellular specific yield of lipids. Extracellular specific yield of lipid was highest in R. glutinis culture (0.025 g g-1 of biomass) followed by R. mucilaginosa (0.022 g g-1 of biomass) and G. wiiroense (0.020 g g-1 of biomass). Intracellular lipid was again highest in R. glutinis (0.048 g g-1 of biomass). The most prominent fatty acid methyl esters among the lipid as detected by GC-MS were saturated lipids mainly octadecanoic acid, tetradecanoate, and hexadecanoate. Extracellular lipid produced on starch substrate waste would be a cost-effective alternative for energy-intensive extraction process in biodiesel industry.


Assuntos
Biocombustíveis/microbiologia , Bioprospecção/métodos , Ganoderma/química , Microbiologia Industrial/métodos , Lipídeos/análise , Rhodotorula/química , Saccharomyces/química , Biocombustíveis/análise , Ácidos Graxos/análise , Ganoderma/metabolismo , Metabolismo dos Lipídeos , Rhodotorula/metabolismo , Saccharomyces/metabolismo , Resíduos Sólidos/análise , Amido/química , Amido/metabolismo
12.
Arch Microbiol ; 199(9): 1311-1323, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28669069

RESUMO

The present investigation aimed to understand the influence of two plant growth promoting cyanobacterial formulations (Anabaena-Mesorhizobium ciceri biofilm and Anabaena laxa), along with Mesorhizobium ciceri, on the symbiotic performance of five each of desi- and kabuli-chickpea cultivars. Inoculation with cyanobacterial formulations led to significant interactions with different cultivars, in terms of fresh weight and number of nodules, the concentration of nodular leghemoglobin, and the number of pods. The inoculant A. laxa alone was superior in its performance, recording 30-50% higher values than uninoculated control, and led to significantly higher nodule number per plant and fresh root weight, relative to the M. ciceri alone. Highest nodule numbers were recorded in the kabuli cultivars BG256 and BG1003. The kabuli cultivar BG1108 treated with the biofilmed Anabaena-M. ciceri inoculant recorded the highest concentration of leghemoglobin in nodules. These inoculants also stimulated the elicitation of defense- and pathogenesis-related enzymes in both the desi and kabuli cultivars, by two to threefolds. The analyses of Denaturing Gradient Gel Electrophoresis (DGGE) profiles revealed that microbial communities in nodules were highly diverse, with about 23 archaeal, 9 bacterial, and 13 cyanobacterial predominant phylotypes observed in both desi and kabuli cultivars, and influenced by the inoculants. Our findings illustrate that the performance of the chickpea plants may be significantly modulated by the microbial communities in the nodule, which may contribute towards improved plant growth and metabolic activity of nodules. This emphasizes the promise of cyanobacterial inoculants in improving the symbiotic performance of chickpea.


Assuntos
Anabaena/metabolismo , Cicer/crescimento & desenvolvimento , Cicer/microbiologia , Mesorhizobium/metabolismo , Rhizobium/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Microbiota , Fixação de Nitrogênio/fisiologia , Fenômenos Fisiológicos Vegetais , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Simbiose
13.
J Environ Sci Health B ; 52(4): 229-236, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28080203

RESUMO

An atrazine degrading enrichment culture, a consortium of bacteria of genus Bacillus along with Pseudomonas and Burkholderia, was immobilized in sodium alginate and was used to study atrazine degradation in mineral salts medium (MSM), soil and wastewater effluent. Sodium alginate immobilized consortium, when stored at room temperature (24 ± 5°C), was effective in degrading atrazine in MSM up to 90 days of storage. The survival of bacteria in alginate beads, based on colony formation unit (CFU) counts, suggested survival up to 90 days and population counts decreased to 1/5th on 120 days. Comparison of atrazine degrading ability of the freely suspended enrichment culture and immobilized culture suggested that the immobilized culture took longer time for complete degradation of atrazine as a lag phase of 2 days was observed in the MSM inoculated with alginate immobilized culture. The free cells resulted in complete degradation of atrazine within 6 days, while immobilized cells took 10 days for 100% atrazine degradation. Further, immobilized cultures were able to degrade atrazine in soil and wastewater effluent. Alginate beads were stable and effective in degrading atrazine till 3rd transfer and disintegrated thereafter. The study suggested that immobilized enrichment culture, due to its better storage and application, can be used to degrade atrazine in soil water system.


Assuntos
Atrazina/metabolismo , Consórcios Microbianos/fisiologia , Poluentes do Solo/metabolismo , Poluentes Químicos da Água/metabolismo , Alginatos , Bacillus/metabolismo , Biodegradação Ambiental , Burkholderia/metabolismo , Células Imobilizadas , Técnicas de Cultura/métodos , Ácido Glucurônico , Ácidos Hexurônicos , Pseudomonas/metabolismo , Solo , Águas Residuárias/química
14.
J Environ Sci Health B ; 52(9): 671-682, 2017 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-28679066

RESUMO

Low cost agro-waste biosorbents namely eucalyptus bark (EB), corn cob (CC), bamboo chips (BC), rice straw (RS) and rice husk (RH) were characterized and used to study atrazine and imidacloprid sorption. Adsorption studies suggested that biosorbents greatly varied in their pesticide sorption behaviour. The EB was the best biosorbent to sorb both atrazine and imidacloprid with KF values of 169.9 and 85.71, respectively. The adsorption isotherm were nonlinear in nature with slope (1/n) values <1. The Freundlich constant Correlating atrazine/imidacloprid sorption parameter [KF.(1/n)] with the physicochemical properties of the biosorbents suggested that atrazine adsorption correlated significantly to the aromaticity, polarity, surface area, fractal dimension, lacunarity and relative C-O band intensity parameters of biosorbents. Probably, both physisorption and electrostatic interactions were responsible for the pesticide sorption. The eucalyptus bark can be exploited as low cost adsorbent for the removal of these pesticides as well as a component of on-farm biopurification systems.


Assuntos
Agricultura/métodos , Atrazina/isolamento & purificação , Neonicotinoides/isolamento & purificação , Nitrocompostos/isolamento & purificação , Praguicidas/isolamento & purificação , Adsorção , Atrazina/química , Eucalyptus , Neonicotinoides/química , Nitrocompostos/química , Oryza , Praguicidas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Zea mays
15.
Biotechnol Appl Biochem ; 63(5): 659-668, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26202604

RESUMO

ß-Glucosidase is an essential part of cellulase enzyme system for efficient and complete hydrolysis of biomass. Psychrotolerant Pseudomonas lutea BG8 produced ß-glucosidase with lower temperature optima and hence can play important role in bringing down the energy requirement for bioethanol production. To enhance ß-glucosidase production, two statistical tools: Taguchi and Box-Behnken designs were applied to reveal the most influential factors and their respective concentration for maximum production of ß-glucosidase under submerged fermentation. The optimal medium composition for maximum ß-glucosidase production were 2.99% (w/v) bagasse, 0.33% (w/v) yeast extract, 0.38% (w/v) Triton X-100, 0.39% (w/v) NaNO3 , and pH 8.0 at temperature 30 °C. Under optimized conditions, ß-glucosidase production increased up to 9.12-fold (17.52 ± 0.24 IU/g) in shake flask. Large-scale production in 7-L stirred tank bioreactor resulted in higher ß-glucosidase production (23.29 ± 0.23 IU/g) within 80 H of incubation, which was 1.34-fold higher than shake flask studies. Commercial cellulase (Celluclast® 1.5L) when supplemented with this crude ß-glucosidase resulted in improved sugar release (548.4 ± 2.76 mg/gds) from paddy straw at comparatively low temperature (40 °C) of saccharification. P. lutea BG8 therefore showed great potential for cold active ß-glucosidase production and can be used as accessory enzyme along with commercial cellulase to improve saccharification efficiency.


Assuntos
Biotecnologia/métodos , Carboidratos/química , Temperatura Baixa , Extratos Vegetais/química , Pseudomonas/metabolismo , beta-Glucosidase/biossíntese , beta-Glucosidase/metabolismo , Reatores Biológicos/microbiologia , Fermentação , Cinética , Estatística como Assunto
16.
J Basic Microbiol ; 56(9): 1009-20, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27133232

RESUMO

Eisenia foetida and Perionyx excavatus are potent vermicomposting earthworms having immense importance in organic matter recycling under tropical conditions, particularly in India. Comparative assessment of the cultivable gut microbiome of these two epigeic earthworms after growth on lignocellulosic biomass, revealed populations of 3.2-8.3 × 10(9) CFU. Diversity analyses using 16S rDNA sequences revealed that the major dominating classes were Firmicutes (50-60%), followed by Actinobacteria (26.7-33%), and Alphaproteobacteria (5.6-6.7%). Despite exhibiting similar diversity indices and species richness, Betaproteobacteria (6.7%) and Gammaproteobacteria (11.1%) were solely present in E. foetida and P. excavatus, respectively. A set of 33 distinct morphotypes, including 18 from E. foetida and 15 from P. excavatus were selected. Carbohydrate utilization profiles generated using Hi-Carbo™ kits revealed that the isolates from the gut of P. excavatus - Arthrobacter pascens IARI-L13 and Bacillus subtilis IARIC were able to utilize 54 and 51.4% of the carbohydrates tested. Sorbose was not utilized, while unusual carbohydrates - adonitol and methyl-d-mannoside were utilized only by members from the gut of P. excavatus, while melizitose was utilized by those uniquely by E. foetida microbiome. Functional characterization revealed that ß-glucosidase activity was most prevalent in the culturable microbial community. Alkaline and acid phosphatase activity was more widespread in the E. foetida gut microbiome. All the culturable gut bacterial isolates produced ammonia, but IAA was detected only in five cultures. The unique functional attributes of the two culturable microbiomes, grown on a similar diet, reveals the significance of proper selection of earthworm substrate combinations for effective vermicomposting.


Assuntos
Actinobacteria/metabolismo , Amônia/metabolismo , Firmicutes/metabolismo , Microbioma Gastrointestinal , Oligoquetos/microbiologia , Proteobactérias/metabolismo , Fosfatase Ácida/metabolismo , Agricultura , Fosfatase Alcalina/metabolismo , Animais , Metabolismo dos Carboidratos , Ácidos Indolacéticos/metabolismo , Lignina/metabolismo , Microbiologia do Solo , beta-Glucosidase/metabolismo
17.
J Environ Manage ; 181: 728-736, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27558829

RESUMO

Microbial degradation is a useful tool to prevent chemical pollution in soil. In the present study, in-situ bioremediation of polyaromatic hydrocarbons (PAHs) by microbial consortium consisting of Serratia marcescens L-11, Streptomyces rochei PAH-13 and Phanerochaete chrysosporium VV-18 has been reported. In preliminary studies, the consortium degraded nearly 60-70% of PAHs in broth within 7 days under controlled conditions. The same consortium was evaluated for its competence under natural conditions by amending the soil with ammonium sulphate, paddy straw and compost. Highest microbial activity in terms of dehydrogenase, FDA hydrolase and aryl esterase was recorded on the 5(th) day. The degradation rate of PAHs significantly increased up to 56-98% within 7 days under in-situ however almost complete dissipation (83.50-100%) was observed on the 30(th) day. Among all the co-substrates evaluated, faster degradation of PAHs was observed in compost amended soil wherein fluorene, anthracene, phenanthrene and pyrene degraded with half-life of 1.71, 4.70, 2.04 and 6.14 days respectively. Different degradation products formed were also identified by GC-MS. Besides traces of parent PAHs eleven non-polar and five polar products were identified by direct and silylation reaction respectively. Various products formed indicated that consortium was capable to degrade PAHs by oxidation to mineralization.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos Aromáticos/metabolismo , Consórcios Microbianos , Compostos Policíclicos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Solo/química , Meia-Vida , Hidrocarbonetos Aromáticos/química , Phanerochaete/metabolismo , Compostos Policíclicos/química , Poluentes do Solo/análise , Poluentes do Solo/química , Streptomyces/metabolismo
18.
Indian J Exp Biol ; 54(8): 518-24, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-28577515

RESUMO

A successful lignocellulosic ethanol production process needs to address the technological impediments such as cost-competitiveness and sustainability of the process. Effective biomass utilization requires a repertoire of enzymes including various accessory enzymes. Developing an enzyme preparation with defined hydrolytic activities can circumvent the need for supplementing cellulases with accessory enzymes for enhanced hydrolysis. With this objective, mixture design approach was used in the present study to enhance glycoside hydrolase production of a fungal isolate, Aspergillus terreus CM20, by determining the proportion of different lignocellulosic components as enzyme inducers in the culture medium. A mixture of paddy straw and wheat straw (1.42:1.58) resulted in improved cellulolytic activities. The precipitated crude enzyme showed higher CMCase (365.03 18 IU g-1), FPase (161.48 IU g-1), avicelase (15.46 IU g-1), ß-glucosidase (920.92 IU g-1) and xylanase (9627.79 IU g-1) activities. The potential of the crude enzyme for saccharification of alkali pretreated paddy straw was also tested. Under optimum conditions, saccharification released 25.0 g L-1 of fermentable sugars. This indicates the superiority of the crude enzyme produced with respect to its hydrolytic enzyme components.


Assuntos
Aspergillus/enzimologia , Glicosídeo Hidrolases/biossíntese , Lignina/metabolismo , Oryza/microbiologia , Caules de Planta/microbiologia , Biocatálise , Biocombustíveis , Hidrólise , Microbiologia Industrial/métodos , Oryza/metabolismo , Caules de Planta/metabolismo , Especificidade por Substrato
19.
J Environ Sci Health B ; 51(1): 24-34, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26479154

RESUMO

An enrichment culture was used to study atrazine degradation in mineral salt medium (MSM) (T1), MSM+soil extract (1:1, v/v) (T2) and soil extract (T3). Results suggested that enrichment culture required soil extract to degrade atrazine, as after second sequential transfer only partial atrazine degradation was observed in T1 treatment while atrazine was completely degraded in T2 and T3 treatments even after fourth transfer. Culture independent polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique confirmed selective enrichment of genus Bacillus along with Pseudomonas and Burkholderia. Degradation of atrazine/metabolites in the industrial wastewater was studied at different initial concentrations of the contaminants [wastewater-water (v/v) ratio: T1, 1:9; T2, 2:8; T3, 3:7; T4, 5:5 and T5, undiluted effluent]. The initial concentrations of atrazine, cyanuric acid and biuret ranged between 5.32 and 53.92 µg mL(-1), 265.6 and 1805.2 µg mL(-1) and 1.85 and 16.12 µg mL(-1), respectively. The enrichment culture was able to completely degrade atrazine, cyanuric acid and biuret up to T4 treatment, while no appreciable degradation of contaminants was observed in the undiluted effluent (T5). Inability of enrichment culture to degrade atrazine/metabolites might be due to high concentrations of cyanuric acid. Therefore, a separate study on cyanuric acid degradation suggested: (i) no appreciable cyanuric acid degradation with accumulation of an unidentified metabolite in the medium where cyanuric acid was supplemented as the sole source of carbon and nitrogen; (ii) partial cyanuric acid degradation with accumulation of unidentified metabolite in the medium containing additional nitrogen source; and (iii) complete cyanuric acid degradation in the medium supplemented with an additional carbon source. This unidentified metabolite observed during cyanuric acid degradation and also detected in the enrichment culture inoculated wastewater samples, however, was degraded up to T4 treatments and was persistent in the T5 treatment. Probably, accumulation of this metabolite inhibited atrazine/cyanuric acid degradation by the enrichment culture in undiluted wastewater.


Assuntos
Atrazina/metabolismo , Bactérias/metabolismo , Biureto/metabolismo , Triazinas/metabolismo , Poluentes Químicos da Água/metabolismo , Bactérias/classificação , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Gradiente Desnaturante , Microbiota , Reação em Cadeia da Polimerase , Águas Residuárias/microbiologia
20.
J Basic Microbiol ; 55(6): 790-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25639595

RESUMO

The filamentous bacteria Streptomyces spp. produces diverse extracellular enzymes and other secondary metabolites. Proteomic analysis of the secretome of holocellulolytic Streptomyces sp. ssr-198 was done by tandem mass spectrometry using an Orbitrap Velos hybrid mass spectrometer. A wide range of hydrolytic enzymes, including glycoside hydrolases (17), proteases (17), polysaccharide lyases (3), esterases (2), and hypothetical proteins (14) were detected in the secretome analyzed. Overall, the secretome composition constituted of 12.50% cellulases, 17.50% hemicellulases, 21.25% proteases, 17.50% hypothetical proteins, and 31.25% other proteins. Comprehensive analysis of secretome will be useful in gaining better understanding of the unique role of hydrolytic enzymes in lignocellulose hydrolysis and helps in determining the industrial applications of these potent enzymes.


Assuntos
Proteínas de Bactérias/análise , Hidrolases/análise , Lignina/metabolismo , Proteoma/análise , Streptomyces/química , Streptomyces/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Celulases/análise , Celulases/metabolismo , Hidrolases/metabolismo , Streptomyces/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA