Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(51): e2300474120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38100417

RESUMO

Seasonal influenza results in 3 to 5 million cases of severe disease and 250,000 to 500,000 deaths annually. Macrophages have been implicated in both the resolution and progression of the disease, but the drivers of these outcomes are poorly understood. We probed mouse lung transcriptomic datasets using the Digital Cell Quantifier algorithm to predict immune cell subsets that correlated with mild or severe influenza A virus (IAV) infection outcomes. We identified a unique lung macrophage population that transcriptionally resembled small serosal cavity macrophages and whose presence correlated with mild disease. Until now, the study of serosal macrophage translocation in the context of viral infections has been neglected. Here, we show that pleural macrophages (PMs) migrate from the pleural cavity to the lung after infection with IAV. We found that the depletion of PMs increased morbidity and pulmonary inflammation. There were increased proinflammatory cytokines in the pleural cavity and an influx of neutrophils within the lung. Our results show that PMs are recruited to the lung during IAV infection and contribute to recovery from influenza. This study expands our knowledge of PM plasticity and identifies a source of lung macrophages independent of monocyte recruitment and local proliferation.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Influenza Humana/genética , Pulmão , Macrófagos , Macrófagos Alveolares
2.
PLoS Pathog ; 19(12): e1011797, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38079450

RESUMO

The impact of the host immune environment on parasite transcription and fitness is currently unknown. It is widely held that hookworm infections have an immunomodulatory impact on the host, but whether the converse is true remains unclear. Immunity against adult-stage hookworms is largely mediated by Type 2 immune responses driven by the transcription factor Signal Transducer and Activator of Transcription 6 (STAT6). This study investigated whether serial passage of the rodent hookworm Nippostrongylus brasiliensis in STAT6-deficient mice (STAT6 KO) caused changes in parasites over time. After adaptation to STAT6 KO hosts, N. brasiliensis increased their reproductive output, feeding capacity, energy content, and body size. Using an improved N. brasiliensis genome, we found that these physiological changes corresponded with a dramatic shift in the transcriptional landscape, including increased expression of gene pathways associated with egg production, but a decrease in genes encoding neuropeptides, proteases, SCP/TAPS proteins, and transthyretin-like proteins; the latter three categories have been repeatedly observed in hookworm excreted/secreted proteins (ESPs) implicated in immunosuppression. Although transcriptional changes started to appear in the first generation of passage in STAT6 KO hosts for both immature and mature adult stages, downregulation of the genes putatively involved in immunosuppression was only observed after multiple generations in this immunodeficient environment. When STAT6 KO-adapted N. brasiliensis were reintroduced to a naive WT host after up to 26 generations, this progressive change in host-adaptation corresponded to increased production of inflammatory cytokines by the WT host. Surprisingly, however, this single exposure of STAT6 KO-adapted N. brasiliensis to WT hosts resulted in worms that were morphologically and transcriptionally indistinguishable from WT-adapted parasites. This work uncovers remarkable plasticity in the ability of hookworms to adapt to their hosts, which may present a general feature of parasitic nematodes.


Assuntos
Ancylostomatoidea , Infecções por Uncinaria , Camundongos , Animais , Citocinas , Nippostrongylus , Fator de Transcrição STAT6/genética
3.
PLoS Pathog ; 19(9): e1011658, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37747879

RESUMO

Type 2 cytokines like IL-4 are hallmarks of helminth infection and activate macrophages to limit immunopathology and mediate helminth clearance. In addition to cytokines, nutrients and metabolites critically influence macrophage polarization. Choline is an essential nutrient known to support normal macrophage responses to lipopolysaccharide; however, its function in macrophages polarized by type 2 cytokines is unknown. Using murine IL-4-polarized macrophages, targeted lipidomics revealed significantly elevated levels of phosphatidylcholine, with select changes to other choline-containing lipid species. These changes were supported by the coordinated up-regulation of choline transport compared to naïve macrophages. Pharmacological inhibition of choline metabolism significantly suppressed several mitochondrial transcripts and dramatically inhibited select IL-4-responsive transcripts, most notably, Retnla. We further confirmed that blocking choline metabolism diminished IL-4-induced RELMα (encoded by Retnla) protein content and secretion and caused a dramatic reprogramming toward glycolytic metabolism. To better understand the physiological implications of these observations, naïve or mice infected with the intestinal helminth Heligmosomoides polygyrus were treated with the choline kinase α inhibitor, RSM-932A, to limit choline metabolism in vivo. Pharmacological inhibition of choline metabolism lowered RELMα expression across cell-types and tissues and led to the disappearance of peritoneal macrophages and B-1 lymphocytes and an influx of infiltrating monocytes. The impaired macrophage activation was associated with some loss in optimal immunity to H. polygyrus, with increased egg burden. Together, these data demonstrate that choline metabolism is required for macrophage RELMα induction, metabolic programming, and peritoneal immune homeostasis, which could have important implications in the context of other models of infection or cancer immunity.


Assuntos
Interleucina-4 , Ativação de Macrófagos , Animais , Camundongos , Colina/metabolismo , Citocinas/metabolismo , Interleucina-4/metabolismo , Macrófagos , Camundongos Endogâmicos C57BL , Regulação para Cima
4.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35078920

RESUMO

Many animal species are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and could act as reservoirs; however, transmission in free-living animals has not been documented. White-tailed deer, the predominant cervid in North America, are susceptible to SARS-CoV-2 infection, and experimentally infected fawns can transmit the virus. To test the hypothesis that SARS-CoV-2 is circulating in deer, 283 retropharyngeal lymph node (RPLN) samples collected from 151 free-living and 132 captive deer in Iowa from April 2020 through January of 2021 were assayed for the presence of SARS-CoV-2 RNA. Ninety-four of the 283 (33.2%) deer samples were positive for SARS-CoV-2 RNA as assessed by RT-PCR. Notably, following the November 2020 peak of human cases in Iowa, and coinciding with the onset of winter and the peak deer hunting season, SARS-CoV-2 RNA was detected in 80 of 97 (82.5%) RPLN samples collected over a 7-wk period. Whole genome sequencing of all 94 positive RPLN samples identified 12 SARS-CoV-2 lineages, with B.1.2 (n = 51; 54.5%) and B.1.311 (n = 19; 20%) accounting for ∼75% of all samples. The geographic distribution and nesting of clusters of deer and human lineages strongly suggest multiple human-to-deer transmission events followed by subsequent deer-to-deer spread. These discoveries have important implications for the long-term persistence of the SARS-CoV-2 pandemic. Our findings highlight an urgent need for a robust and proactive "One Health" approach to obtain enhanced understanding of the ecology, molecular evolution, and dissemination of SARS-CoV-2.


Assuntos
COVID-19/transmissão , Cervos/virologia , SARS-CoV-2/isolamento & purificação , Zoonoses/virologia , Animais , COVID-19/virologia , Reservatórios de Doenças/virologia , Humanos , SARS-CoV-2/genética
5.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34588290

RESUMO

The association of the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein with human angiotensin-converting enzyme 2 (hACE2) represents the first required step for cellular entry. SARS-CoV-2 has continued to evolve with the emergence of several novel variants, and amino acid changes in the RBD have been implicated with increased fitness and potential for immune evasion. Reliably predicting the effect of amino acid changes on the ability of the RBD to interact more strongly with the hACE2 can help assess the implications for public health and the potential for spillover and adaptation into other animals. Here, we introduce a two-step framework that first relies on 48 independent 4-ns molecular dynamics (MD) trajectories of RBD-hACE2 variants to collect binding energy terms decomposed into Coulombic, covalent, van der Waals, lipophilic, generalized Born solvation, hydrogen bonding, π-π packing, and self-contact correction terms. The second step implements a neural network to classify and quantitatively predict binding affinity changes using the decomposed energy terms as descriptors. The computational base achieves a validation accuracy of 82.8% for classifying single-amino acid substitution variants of the RBD as worsening or improving binding affinity for hACE2 and a correlation coefficient of 0.73 between predicted and experimentally calculated changes in binding affinities. Both metrics are calculated using a fivefold cross-validation test. Our method thus sets up a framework for screening binding affinity changes caused by unknown single- and multiple-amino acid changes offering a valuable tool to predict host adaptation of SARS-CoV-2 variants toward tighter hACE2 binding.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Interações Hospedeiro-Patógeno/genética , Redes Neurais de Computação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Substituição de Aminoácidos , Sítios de Ligação/genética , Humanos , Simulação de Dinâmica Molecular , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
6.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892129

RESUMO

This study focuses on understanding the transcriptional heterogeneity of activated platelets and its impact on diseases such as sepsis, COVID-19, and systemic lupus erythematosus (SLE). Recognizing the limited knowledge in this area, our research aims to dissect the complex transcriptional profiles of activated platelets to aid in developing targeted therapies for abnormal and pathogenic platelet subtypes. We analyzed single-cell transcriptional profiles from 47,977 platelets derived from 413 samples of patients with these diseases, utilizing Deep Neural Network (DNN) and eXtreme Gradient Boosting (XGB) to distinguish transcriptomic signatures predictive of fatal or survival outcomes. Our approach included source data annotations and platelet markers, along with SingleR and Seurat for comprehensive profiling. Additionally, we employed Uniform Manifold Approximation and Projection (UMAP) for effective dimensionality reduction and visualization, aiding in the identification of various platelet subtypes and their relation to disease severity and patient outcomes. Our results highlighted distinct platelet subpopulations that correlate with disease severity, revealing that changes in platelet transcription patterns can intensify endotheliopathy, increasing the risk of coagulation in fatal cases. Moreover, these changes may impact lymphocyte function, indicating a more extensive role for platelets in inflammatory and immune responses. This study identifies crucial biomarkers of platelet heterogeneity in serious health conditions, paving the way for innovative therapeutic approaches targeting platelet activation, which could improve patient outcomes in diseases characterized by altered platelet function.


Assuntos
Plaquetas , COVID-19 , Lúpus Eritematoso Sistêmico , Aprendizado de Máquina , SARS-CoV-2 , Sepse , Análise de Célula Única , Transcriptoma , Humanos , COVID-19/sangue , COVID-19/genética , COVID-19/virologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/sangue , Plaquetas/metabolismo , Análise de Célula Única/métodos , Sepse/genética , Sepse/sangue , Perfilação da Expressão Gênica/métodos , Ativação Plaquetária/genética
7.
BMC Public Health ; 23(1): 1584, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598150

RESUMO

BACKGROUND: Health disparities in underserved communities, such as inadequate healthcare access, impact COVID-19 disease outcomes. These disparities are evident in Hispanic populations nationwide, with disproportionately high infection and mortality rates. Furthermore, infected individuals can develop long COVID with sustained impacts on quality of life. The goal of this study was to identify immune and endothelial factors that are associated with COVID-19 outcomes in Riverside County, a high-risk and predominantly Hispanic community, and investigate the long-term impacts of COVID-19 infection. METHODS: 112 participants in Riverside County, California, were recruited according to the following criteria: healthy control (n = 23), outpatients with moderate infection (outpatient, n = 33), ICU patients with severe infection (hospitalized, n = 33), and individuals recovered from moderate infection (n = 23). Differences in outcomes between Hispanic and non-Hispanic individuals and presence/absence of co-morbidities were evaluated. Circulating immune and vascular biomarkers were measured by ELISA, multiplex analyte assays, and flow cytometry. Follow-up assessments for long COVID, lung health, and immune and vascular changes were conducted after recovery (n = 23) including paired analyses of the same participants. RESULTS: Compared to uninfected controls, the severe infection group had a higher proportion of Hispanic individuals (n = 23, p = 0.012) than moderate infection (n = 8, p = 0.550). Disease severity was associated with changes in innate monocytes and neutrophils, lymphopenia, disrupted cytokine production (increased IL-8 and IP-10/CXCL10 but reduced IFNλ2/3 and IFNγ), and increased endothelial injury (myoglobin, VCAM-1). In the severe infection group, a machine learning model identified LCN2/NGAL, IL-6, and monocyte activation as parameters associated with fatality while anti-coagulant therapy was associated with survival. Recovery from moderate COVID infection resulted in long-term immune changes including increased monocytes/lymphocytes and decreased neutrophils and endothelial markers. This group had a lower proportion of co-morbidities (n = 8, p = 1.0) but still reported symptoms associated with long COVID despite recovered pulmonary function. CONCLUSION: This study indicates increased severity of COVID-19 infection in Hispanic individuals of Riverside County, California. Infection resulted in immunological and vascular changes and long COVID symptoms that were sustained for up to 11 months, however, lung volume and airflow resistance was recovered. Given the immune and behavioral impacts of long COVID, the potential for increased susceptibility to infections and decreased quality of life in high-risk populations warrants further investigation.


Assuntos
COVID-19 , Humanos , Síndrome de COVID-19 Pós-Aguda , Qualidade de Vida , California/epidemiologia , Gravidade do Paciente
8.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108233

RESUMO

The role of pulmonary free fatty acid receptor 4 (FFAR4) is not fully elucidated and we aimed to clarify the impact of FFAR4 on the pulmonary immune response and return to homeostasis. We employed a known high-risk human pulmonary immunogenic exposure to extracts of dust from swine confinement facilities (DE). WT and Ffar4-null mice were repetitively exposed to DE via intranasal instillation and supplemented with docosahexaenoic acid (DHA) by oral gavage. We sought to understand if previous findings of DHA-mediated attenuation of the DE-induced inflammatory response are FFAR4-dependent. We identified that DHA mediates anti-inflammatory effects independent of FFAR4 expression, and that DE-exposed mice lacking FFAR4 had reduced immune cells in the airways, epithelial dysplasia, and impaired pulmonary barrier integrity. Analysis of transcripts using an immunology gene expression panel revealed a role for FFAR4 in lungs related to innate immune initiation of inflammation, cytoprotection, and immune cell migration. Ultimately, the presence of FFAR4 in the lung may regulate cell survival and repair following immune injury, suggestive of potential therapeutic directions for pulmonary disease.


Assuntos
Ácidos Docosa-Hexaenoicos , Receptores Acoplados a Proteínas G , Humanos , Animais , Camundongos , Suínos , Ácidos Docosa-Hexaenoicos/farmacologia , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Pulmão/metabolismo , Suplementos Nutricionais , Inflamação , Camundongos Knockout
9.
Biochem Soc Trans ; 50(1): 107-118, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35076687

RESUMO

Neuropeptides comprise a diverse and broad group of neurotransmitters in vertebrates and invertebrates, with critical roles in neuronal signal transduction. While their role in controlling learning and memory in the brains of mammals is known, their extra-synaptic function in infection and inflammation with effects on distinct tissues and immune cells is increasingly recognized. Helminth infections especially of the central nervous system (CNS), such as neurocysticercosis, induce neuropeptide production by both host and helminth, but their role in host-parasite interplay or host inflammatory response is unclear. Here, we review the neurobiology of helminths, and discuss recent studies on neuropeptide synthesis and function in the helminth as well as the host CNS and immune system. Neuropeptides are summarized according to structure and function, and we discuss the complex enzyme processing for mature neuropeptides, focusing on helminth enzymes as potential targets for novel anthelminthics. We next describe known immunomodulatory effects of mammalian neuropeptides discovered from mouse infection models and draw functional parallels with helminth neuropeptides. Last, we discuss the anti-microbial properties of neuropeptides, and how they may be involved in host-microbiota changes in helminth infection. Overall, a better understanding of the biology of helminth neuropeptides, and whether they affect infection outcomes could provide diagnostic and therapeutic opportunities for helminth infections.


Assuntos
Helmintíase , Helmintos , Neuropeptídeos , Parasitos , Animais , Helmintíase/parasitologia , Interações Hospedeiro-Parasita , Imunomodulação , Mamíferos , Camundongos , Neuropeptídeos/fisiologia , Peptídeo Hidrolases
10.
Clin Sci (Lond) ; 136(21): 1485-1511, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36259366

RESUMO

The attenuation of diabetic kidney disease (DKD) by metabolic surgery is enhanced by pharmacotherapy promoting renal fatty acid oxidation (FAO). Using the Zucker Diabetic Fatty and Zucker Diabetic Sprague Dawley rat models of DKD, we conducted studies to determine if these effects could be replicated with a non-invasive bariatric mimetic intervention. Metabolic control and renal injury were compared in rats undergoing a dietary restriction plus medical therapy protocol (DMT; fenofibrate, liraglutide, metformin, ramipril, and rosuvastatin) and ad libitum-fed controls. The global renal cortical transcriptome and urinary 1H-NMR metabolomic profiles were also compared. Kidney cell type-specific and medication-specific transcriptomic responses were explored through in silico deconvolution. Transcriptomic and metabolomic correlates of improvements in kidney structure were defined using a molecular morphometric approach. The DMT protocol led to ∼20% weight loss, normalized metabolic parameters and was associated with reductions in indices of glomerular and proximal tubular injury. The transcriptomic response to DMT was dominated by changes in fenofibrate- and peroxisome proliferator-activated receptor-α (PPARα)-governed peroxisomal and mitochondrial FAO transcripts localizing to the proximal tubule. DMT induced urinary excretion of PPARα-regulated metabolites involved in nicotinamide metabolism and reversed DKD-associated changes in the urinary excretion of tricarboxylic acid (TCA) cycle intermediates. FAO transcripts and urinary nicotinamide and TCA cycle metabolites were moderately to strongly correlated with improvements in glomerular and proximal tubular injury. Weight loss plus pharmacological PPARα agonism is a promising means of attenuating DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Fenofibrato , Ratos , Masculino , Animais , PPAR alfa/genética , PPAR alfa/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Fenofibrato/farmacologia , Fenofibrato/metabolismo , Ratos Zucker , Ratos Sprague-Dawley , Rim/metabolismo , Redução de Peso , Niacinamida , Diabetes Mellitus/metabolismo
11.
Gastroenterology ; 159(5): 1763-1777.e14, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32652144

RESUMO

BACKGROUND & AIMS: The mechanisms by which macrophages regulate intestinal epithelial cell (IEC) barrier properties are poorly understood. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) protects the IEC barrier from inflammation-induced disruption and regulates macrophage functions. We investigated whether PTPN2 controls interactions between IECs and macrophages to maintain intestinal barrier function. METHODS: Human IEC (Caco-2BBe/HT-29.cl19a cells) and mouse enteroid monolayers were cocultured with human macrophages (THP-1, U937, primary monocyte-derived macrophages from patients with inflammatory bowel disease [IBD]) or mouse macrophages, respectively. We assessed barrier function (transepithelial electrical resistance [TEER] and permeability to 4-kDa fluorescently labeled dextran or 70-kDa rhodamine B-dextran) and macrophage polarization. We analyzed intestinal tissues from mice with myeloid cell-specific deletion of PTPN2 (Ptpn2-LysMCre mice) and mice without disruption of Ptpn2 (controls); some mice were given injections of a neutralizing antibody against interleukin (IL) 6. Proteins were knocked down in macrophages and/or IECs with small hairpin RNAs. RESULTS: Knockdown of PTPN2 in either macrophages and/or IECs increased the permeability of IEC monolayers, had a synergistic effect when knocked down from both cell types, and increased the development of inflammatory macrophages in macrophage-IEC cocultures. Colon lamina propria from Ptpn2-LysMCre mice had significant increases in inflammatory macrophages; these mice had increased in vivo and ex vivo colon permeability to 4-kDa fluorescently labeled dextran and reduced ex vivo colon TEER. Nanostring analysis showed significant increases in the expression of IL6 in colon macrophages from Ptpn2-LysMCre mice. An IL6-blocking antibody reversed the effects of PTPN2-deficient macrophages, reducing the permeability of IEC monolayers in culture and in Ptpn2-LysMCre mice. Macrophages from patients with IBD carrying a single-nucleotide polymorphism associated with the disease (PTPN2 rs1893217) had the same features of PTPN2-deficient macrophages from mice, including reduced TEER and increased permeability in cocultures with human IEC or mouse enteroid monolayers, which were restored by anti-IL6. CONCLUSIONS: PTPN2 is required for interactions between macrophages and IECs; loss of PTPN2 from either cell type results in intestinal barrier defects, and loss from both cell types has a synergistic effect. We provide a mechanism by which the PTPN2 gene variants compromise intestinal epithelial barrier function and increase the risk of inflammatory disorders such as IBD.


Assuntos
Comunicação Celular , Células Epiteliais/enzimologia , Doenças Inflamatórias Intestinais/enzimologia , Absorção Intestinal , Mucosa Intestinal/enzimologia , Macrófagos/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Adulto , Células CACO-2 , Técnicas de Cocultura , Células Epiteliais/imunologia , Feminino , Humanos , Imunidade Inata , Imunidade nas Mucosas , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Permeabilidade , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Transdução de Sinais , Células THP-1 , Células U937
12.
J Neuroinflammation ; 18(1): 140, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34154608

RESUMO

BACKGROUND: Obesity is characterized by a systemic inflammation and hypothalamic neuroinflammation. Systemic inflammation is caused by macrophages that infiltrate obese adipose tissues. We previously demonstrated that high-fat diet (HFD)-fed male mice exhibited peripheral macrophage infiltration into the hypothalamus, in addition to activation of resident microglia. Since this infiltration contributes to neuroinflammation and neuronal impairment, herein we characterize the phenotype and origin of these hypothalamic macrophages in HFD mice. METHODS: C57BL/6J mice were fed HFD (60% kcal from fat) or control diet with matching sucrose levels, for 12-16 weeks. Males and females were analyzed separately to determine sex-specific responses to HFD. Differences in hypothalamic gene expression in HFD-fed male and female mice, compared to their lean controls, in two different areas of the hypothalamus, were determined using the NanoString neuroinflammation panel. Phenotypic changes in macrophages that infiltrated the hypothalamus in HFD-fed mice were determined by analyzing cell surface markers using flow cytometry and compared to changes in macrophages from the adipose tissue and peritoneal cavity. Adipose tissue transplantation was performed to determine the source of hypothalamic macrophages. RESULTS: We determined that hypothalamic gene expression profiles demonstrate sex-specific and region-specific diet-induced changes. Sex-specific changes included larger changes in males, while region-specific changes included larger changes in the area surrounding the median eminence. Several genes were identified that may provide partial protection to female mice. We also identified diet-induced changes in macrophage migration into the hypothalamus, adipose tissue, and peritoneal cavity, specifically in males. Further, we determined that hypothalamus-infiltrating macrophages express pro-inflammatory markers and markers of metabolically activated macrophages that were identical to markers of adipose tissue macrophages in HFD-fed mice. Employing adipose tissue transplant, we demonstrate that hypothalamic macrophages can originate from the visceral adipose tissue. CONCLUSION: HFD-fed males experience higher neuroinflammation than females, likely because they accumulate more visceral fat, which provides a source of pro-inflammatory macrophages that migrate to other tissues, including the hypothalamus. Our findings may explain the male bias for neuroinflammation and the metabolic syndrome. Together, our results demonstrate a new connection between the adipose tissue and the hypothalamus in obesity that contributes to neuroinflammation and hypothalamic pathologies.


Assuntos
Movimento Celular , Hipotálamo/patologia , Gordura Intra-Abdominal/patologia , Macrófagos/patologia , Animais , Antígenos CD/análise , Dieta Hiperlipídica/efeitos adversos , Feminino , Expressão Gênica , Hipotálamo/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/complicações , Caracteres Sexuais
13.
Nat Immunol ; 10(7): 697-705, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19465906

RESUMO

Dendritic cells can prime naive CD4+ T cells; however, here we demonstrate that dendritic cell-mediated priming was insufficient for the development of T helper type 2 cell-dependent immunity. We identify basophils as a dominant cell population that coexpressed major histocompatibility complex class II and interleukin 4 message after helminth infection. Basophilia was promoted by thymic stromal lymphopoietin, and depletion of basophils impaired immunity to helminth infection. Basophils promoted antigen-specific CD4+ T cell proliferation and interleukin 4 production in vitro, and transfer of basophils augmented the population expansion of helminth-responsive CD4+ T cells in vivo. Collectively, our studies suggest that major histocompatibility complex class II-dependent interactions between basophils and CD4+ T cells promote T helper type 2 cytokine responses and immunity to helminth infection.


Assuntos
Basófilos/imunologia , Linfócitos T CD4-Positivos/imunologia , Citocinas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Imunidade/imunologia , Animais , Basófilos/citologia , Basófilos/metabolismo , Antígeno CD11c/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Comunicação Celular/imunologia , Proliferação de Células , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Immunoblotting , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/parasitologia , Células Th2/metabolismo , Timo/citologia , Timo/imunologia , Tricuríase/imunologia , Tricuríase/parasitologia
14.
Indian J Palliat Care ; 27(1): 146-151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34035633

RESUMO

INTRODUCTION: Duchene muscular dystrophy (DMD) is a neuromuscular disease of childhood, which has clear progression. The international standardized care guidelines for DMD suggest that palliative care is essential for the affected children. OBJECTIVE: To explore the parent's understanding of palliative care services available for children with DMD and the challenges faced by them in utilizing the same. METHODS: A cross-sectional qualitative exploratory study was conducted among six families of boys diagnosed with DMD. A semi-structured interview guide with prompts was used to conduct in-depth interviews which lasted for an average of 1 h. Thematic analysis was done to identify the pattern or themes. RESULTS: The major themes identified were "palliative care, living with DMD, Awareness about palliative care services and challenges." Awareness about palliative care services is the dominant theme identified as influencing rest of the experiences narrated by the parents of children with DMD. DISCUSSION: Integration of palliative care services from an early stage of the illness can help the child to make transition from one stage to another stage of the illness. To ensure the utilization of the available palliative care services, there is a need to create awareness about it among the general public. CONCLUSION: Introducing the concept of palliation of symptoms and ensuring quality of life of the child with DMD by accessing the available services can aid the parents to reach out for help for their child.

15.
Food Microbiol ; 86: 103327, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31703855

RESUMO

The study investigated the efficacy of two GRAS-status phytochemicals, mega-resveratrol (RV) and naringenin (NG) to inactivate Escherichia coli O157:H7 (EHEC) in apple cider. A five-strain mixture of EHEC (∼7 log CFU/ml) was inoculated into cider, followed by the addition of RV (8.7 mM and 13.0 mM) or NG (7.3 mM and 11.0 mM). The cider samples were stored at 4 °C for 14 days and EHEC was enumerated on days 0,1,5,7 and 14. The deleterious effects of RV and NG on EHEC cells were visualized by scanning electron microscopy (SEM), and RT-qPCR was done to determine the effect of phytochemicals on three known acid resistance (AR) systems of EHEC. NG was more effective than RV and reduced EHEC counts by ∼4.5 log CFU/ml by day 14, whereas RV reduced counts by ∼2.5 log CFU/ml compared to controls (P < 0.05). SEM showed that RV and NG resulted in the destruction of EHEC cells, and surviving bacteria appeared 'lemon shaped'. RT-qPCR results revealed that RV and NG downregulated the transcription of AR associated genes in EHEC (P < 0.05). Results suggest the potential use of RV and NG as natural antimicrobial additives to enhance the microbiological safety of apple cider. However, sensory analysis studies are warranted.


Assuntos
Escherichia coli O157/efeitos dos fármacos , Flavanonas/farmacologia , Aditivos Alimentares/farmacologia , Conservação de Alimentos/métodos , Sucos de Frutas e Vegetais/microbiologia , Malus/microbiologia , Resveratrol/farmacologia , Escherichia coli O157/crescimento & desenvolvimento , Malus/química , Viabilidade Microbiana/efeitos dos fármacos
16.
Proc Natl Acad Sci U S A ; 114(48): E10399-E10408, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29133417

RESUMO

Helminths trigger multiple immunomodulatory pathways that can protect from sepsis. Human resistin (hRetn) is an immune cell-derived protein that is highly elevated in helminth infection and sepsis. However, the function of hRetn in sepsis, or whether hRetn influences helminth protection against sepsis, is unknown. Employing hRetn-expressing transgenic mice (hRETNTg+) and recombinant hRetn, we identify a therapeutic function for hRetn in lipopolysaccharide (LPS)-induced septic shock. hRetn promoted helminth-induced immunomodulation, with increased survival of Nippostrongylus brasiliensis (Nb)-infected hRETNTg+ mice after a fatal LPS dose compared with naive mice or Nb-infected hRETNTg- mice. Employing immunoprecipitation assays, hRETNTg+Tlr4-/- mice, and human immune cell culture, we demonstrate that hRetn binds the LPS receptor Toll-like receptor 4 (TLR4) through its N terminal and modulates STAT3 and TBK1 signaling, triggering a switch from proinflammatory to anti-inflammatory responses. Further, we generate hRetn N-terminal peptides that are able to block LPS proinflammatory function. Together, our studies identify a critical role for hRetn in blocking LPS function with important clinical significance in helminth-induced immunomodulation and sepsis.


Assuntos
Lipopolissacarídeos/metabolismo , Resistina/imunologia , Choque Séptico/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Animais , Terapia Biológica/métodos , Modelos Animais de Doenças , Feminino , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Negativas/metabolismo , Humanos , Receptores de Lipopolissacarídeos/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nippostrongylus/imunologia , Substâncias Protetoras , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Fator de Transcrição STAT3/metabolismo , Choque Séptico/microbiologia , Choque Séptico/terapia , Transdução de Sinais/imunologia
17.
Semin Cancer Biol ; 52(Pt 1): 39-55, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29428478

RESUMO

Cancer is generally caused by the molecular alterations which lead to specific mutations. Advances in molecular biology have provided an impetus to the study of cancers with valuable prognostic and predictive significance. Over the hindsight various attempts have been undertaken by scientists worldwide, in the management of cancer; where, we have witnessed a number of molecular markers which allow the early detection of cancers and lead to a decrease in its mortality rate. Recent advances in oncology have led to the discovery of cancer markers that has allowed early detection and targeted therapy of tumors. In this context, current review provides a detail outlook on various molecular markers for diagnosis, prognosis and management of therapeutic response in cancer patients.


Assuntos
Biomarcadores Tumorais/genética , Predisposição Genética para Doença/genética , Mutação , Neoplasias/genética , Diagnóstico Precoce , Humanos , Oncologia/métodos , Oncologia/tendências , Neoplasias/diagnóstico , Neoplasias/terapia , Medicina de Precisão/métodos , Medicina de Precisão/tendências , Prognóstico , Sensibilidade e Especificidade
18.
Immunol Cell Biol ; 97(3): 258-267, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30746824

RESUMO

Macrophages are critically involved in wound healing, from dampening inflammation to clearing cell debris and coordinating tissue repair. Within the wound, the complexity of macrophage function is increasingly recognized, with adverse outcomes when macrophages are inappropriately activated, such as in fibrosis or chronic non-healing wounds. Recent advances in in vivo and translational wound models, macrophage-specific deletions and new technologies to distinguish macrophage subsets, have uncovered the vast spectrum of macrophage activation and effector functions. Here, we summarize the main players in wound-healing macrophage activation and function, including cytokines, apoptotic cells, nucleotides and mechanical stimuli. We highlight recent studies demonstrating cooperation between these factors for optimal wound healing. Next, we describe recent technologies such as cell tracking and single-cell RNA-seq, which have uncovered remarkable plasticity and heterogeneity in blood-derived or tissue-resident macrophages and discuss the implications for wound healing. Lastly, we evaluate macrophage dysfunction in aberrant wound healing that occurs in aging, diabetes and fibrosis. A better understanding of the longevity and plasticity of wound-healing macrophages, and identification of unique macrophage subsets or specific effector molecules in wound healing, would shed light on the therapeutic potential of manipulating macrophage function for optimal wound healing.


Assuntos
Plasticidade Celular , Macrófagos/imunologia , Macrófagos/metabolismo , Cicatrização , Animais , Apoptose , Biomarcadores , Plasticidade Celular/genética , Plasticidade Celular/imunologia , Citocinas/metabolismo , Suscetibilidade a Doenças , Fibrose , Regulação da Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Transdução de Sinais , Cicatrização/imunologia
19.
Vet Res ; 50(1): 98, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31771624

RESUMO

Mycoplasma hyopneumoniae, the primary pathogenic bacterium causing enzootic pneumonia, significantly affects worldwide swine production. The infection is usually persistent and bacterial identification and isolation of M. hyopneumoniae in clinical samples are challenging due to the fastidious requirements for its growth. Hence, new practical surveillance tools that improve or complement existing diagnostics on M. hyopneumoniae are desirable, especially in early infection. The objective of this study was to identify potential metabolite markers of early M. hyopneumoniae infection in pigs through metabolomics analysis. Samples obtained from pigs in a previous M. hyopneumoniae experimental infection were used in this study. Briefly, two pigs served as mock inoculated controls and ten pigs were intra-tracheally inoculated with M. hyopneumoniae. Sera, laryngeal swabs (LS), and tracheo-bronchial lavage fluid (TBLF) were collected from all pigs at 0, 2, 5, 9, 14, 21 and 28 days post-inoculation (dpi). Bronchial swabs (BS) were collected post-mortem at 28 dpi. Mycoplasma hyopneumoniae infection was confirmed by PCR in LS, TBLF and BS. Serum metabolites were profiled using high-resolution liquid chromatography-mass spectrometry (LC-MS) analysis. Metabolite markers were identified by structural analysis following multivariate analysis of LC-MS data. The results showed that M. hyopneumoniae infection time-dependently altered the serum levels of selective amino acids and fatty acids. α-Aminobutyric acid and long-chain fatty acids were markedly increased at 14 and 21 dpi in inoculated pigs (p < 0.05). These results indicated that M. hyopneumoniae infection caused systemic changes in host metabolism, warranting further studies to determine underlying biochemical and physiological mechanisms responsible for the observed changes.


Assuntos
Biomarcadores/sangue , Metaboloma , Mycoplasma hyopneumoniae/isolamento & purificação , Pneumonia Suína Micoplasmática/metabolismo , Animais , Pneumonia Suína Micoplasmática/microbiologia , Reação em Cadeia da Polimerase/veterinária , Suínos
20.
Vet Res ; 50(1): 86, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661027

RESUMO

This study investigated the influence of gut microbiome composition in modulating susceptibility to Mycoplasma hyopneumoniae in pigs. Thirty-two conventional M. hyopneumoniae free piglets were randomly selected from six different litters at 3 weeks of age and were experimentally inoculated with M. hyopneumoniae at 8 weeks of age. Lung lesion scores (LS) were recorded 4 weeks post-inoculation (12 weeks of age) from piglet lungs at necropsy. Fecal bacterial community composition of piglets at 3, 8 and 12 weeks of age were targeted by amplifying the V3-V4 region of the 16S rRNA gene. The LS ranged from 0.3 to 43% with an evident clustering of the scores observed in piglets within litters. There were significant differences in species richness and alpha diversity in fecal microbiomes among piglets within litters at different time points (p < 0.05). The dissimilarity matrices indicated that at 3 weeks of age, the fecal microbiota of piglets was more dissimilar compared to those from 8 to 12 weeks of age. Specific groups of bacteria in the gut that might predict the decreased severity of M. hyopneumoniae associated lesions were identified. The microbial shift at 3 weeks of age was observed to be driven by the increase in abundance of the indicator family, Ruminococcaceae in piglets with low LS (p < 0.05). The taxa, Ruminococcus_2 having the highest richness scores, correlated significantly between litters showing stronger associations with the lowest LS (r = -0.49, p = 0.005). These findings suggest that early life gut microbiota can be a potential determinant for M. hyopneumoniae susceptibility in pigs.


Assuntos
Suscetibilidade a Doenças/veterinária , Microbioma Gastrointestinal/fisiologia , Pulmão/patologia , Mycoplasma hyopneumoniae/fisiologia , Pneumonia Suína Micoplasmática/patologia , Animais , Suscetibilidade a Doenças/microbiologia , Suscetibilidade a Doenças/patologia , Pneumonia Suína Micoplasmática/microbiologia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA