Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Small ; 18(27): e2201993, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35670200

RESUMO

Polymersomes are vesicular structures self-assembled from amphiphilic block copolymers and are considered an alternative to liposomes for applications in drug delivery, immunotherapy, biosensing, and as nanoreactors and artificial organelles. However, the limited availability of systematic stability, protein fouling (protein corona formation), and blood circulation studies hampers their clinical translation. Poly(2-oxazoline)s (POx) are valuable antifouling hydrophilic polymers that can replace the current gold-standard, poly(ethylene glycol) (PEG), yet investigations of POx functionality on nanoparticles are relatively sparse. Herein, a systematic study is reported of the structural, dynamic and antifouling properties of polymersomes made of poly(2-methyl-2-oxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PMOXA-b-PDMS-b-PMOXA). The study relates in vitro antifouling performance of the polymersomes to atomistic molecular dynamics simulations of polymersome membrane hydration behavior. These observations support the experimentally demonstrated benefit of maximizing the length of PMOXA (degree of polymerization (DP) > 6) while keeping PDMS at a minimal length that still provides sufficient membrane stability (DP > 19). In vitro macrophage association and in vivo blood circulation evaluation of polymersomes in zebrafish embryos corroborate these findings. They further suggest that single copolymer presentation on polymersomes is outperformed by blends of varied copolymer lengths. This study helps to rationalize design rules for stable and low-fouling polymersomes for future medical applications.


Assuntos
Sistemas de Liberação de Medicamentos , Peixe-Zebra , Animais , Interações Hidrofóbicas e Hidrofílicas , Macrófagos , Oxazóis
2.
Adv Exp Med Biol ; 1052: 103-112, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29785484

RESUMO

Malaria is a devastating infectious disease transmitted by mosquitoes, affecting millions of people and killing about half a million children each year. Despite tremendous progress in the control and elimination of malaria within the past years, there are still considerable challenges to be solved. To name a few, drug-resistant parasites, insecticide-resistant mosquitoes and the difficulty to formulate a potent malaria vaccine need to be addressed with new strategies to achieve the final goal of malaria eradication. Nanotechnology-researching and designing innovative structures at the nanoscale-is a promising contemporary technology that is being applied to a vast number of biomedical problems. In the case of malaria, nanotechnology provides tools to design strategies to target drug molecules to specific stages of the parasite, treat drug-resistant parasites, resolve severe malaria, increase vaccine efficacies and combinations thereof. This chapter introduces malaria, discusses current challenges of malaria control and relates these challenges to some potential solutions provided by the nanotechnology field.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Malária/tratamento farmacológico , Nanopartículas/química , Animais , Humanos , Malária/parasitologia , Malária/transmissão , Nanotecnologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia
3.
Chem Soc Rev ; 45(2): 377-411, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26563574

RESUMO

Biological membranes play an essential role in living organisms by providing stable and functional compartments, preserving cell architecture, whilst supporting signalling and selective transport that are mediated by a variety of proteins embedded in the membrane. However, mimicking cell membranes - to be applied in artificial systems - is very challenging because of the vast complexity of biological structures. In this respect a highly promising strategy to designing multifunctional hybrid materials/systems is to combine biological molecules with polymer membranes or to design membranes with intrinsic stimuli-responsive properties. Here we present supramolecular polymer assemblies resulting from self-assembly of mostly amphiphilic copolymers either as 3D compartments (polymersomes, PICsomes, peptosomes), or as planar membranes (free-standing films, solid-supported membranes, membrane-mimetic brushes). In a bioinspired strategy, such synthetic assemblies decorated with biomolecules by insertion/encapsulation/attachment, serve for development of multifunctional systems. In addition, when the assemblies are stimuli-responsive, their architecture and properties change in the presence of stimuli, and release a cargo or allow "on demand" a specific in situ reaction. Relevant examples are included for an overview of bioinspired polymer compartments with nanometre sizes and membranes as candidates in applications ranging from drug delivery systems, up to artificial organelles, or active surfaces. Both the advantages of using polymer supramolecular assemblies and their present limitations are included to serve as a basis for future improvements.


Assuntos
Materiais Biomiméticos/química , Sistemas de Liberação de Medicamentos , Polímeros/química , Animais , Materiais Biomiméticos/síntese química , Humanos , Polímeros/síntese química , Proteínas/química , Propriedades de Superfície
4.
Nano Lett ; 15(6): 3871-8, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26013972

RESUMO

The functioning of biological membrane proteins (MPs) within synthetic block copolymer membranes is an intriguing phenomenon that is believed to offer great potential for applications in life and medical sciences and engineering. The question why biological MPs are able to function in this completely artificial environment is still unresolved by any experimental data. Here, we have analyzed the lateral diffusion properties of different sized MPs within poly(dimethylsiloxane) (PDMS)-containing amphiphilic block copolymer membranes of membrane thicknesses between 9 and 13 nm, which results in a hydrophobic mismatch between the membrane thickness and the size of the proteins of 3.3-7.1 nm (3.5-5 times). We show that the high flexibility of PDMS, which provides membrane fluidities similar to phospholipid bilayers, is the key-factor for MP incorporation.


Assuntos
Dimetilpolisiloxanos/química , Fluidez de Membrana , Proteínas de Membrana/química , Membranas Artificiais
5.
Nano Lett ; 15(11): 7596-603, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26428033

RESUMO

The development of advanced stimuli-responsive systems for medicine, catalysis, or technology requires compartmentalized reaction spaces with triggered activity. Only very few stimuli-responsive systems preserve the compartment architecture, and none allows a triggered activity in situ. We present here a biomimetic strategy to molecular transmembrane transport by engineering synthetic membranes equipped with channel proteins so that they are stimuli-responsive. Nanoreactors with triggered activity were designed by simultaneously encapsulating an enzyme inside polymer compartments, and inserting protein "gates" in the membrane. The outer membrane protein F (OmpF) porin was chemically modified with a pH-responsive molecular cap to serve as "gate" producing pH-driven molecular flow through the membrane and control the in situ enzymatic activity. This strategy provides complex reaction spaces necessary in "smart" medicine and for biomimetic engineering of artificial cells.


Assuntos
Materiais Biomiméticos/química , Membrana Celular/química , Porinas/química , Materiais Biomiméticos/farmacologia , Membrana Celular/genética , Concentração de Íons de Hidrogênio , Permeabilidade/efeitos dos fármacos , Polímeros/química
6.
Chimia (Aarau) ; 70(4): 288-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27131116

RESUMO

Malaria is an infectious disease that needs to be addressed using innovative approaches to counteract spread of drug resistance and to establish or optimize vaccination strategies. With our approach, we aim for a dual action with drug- and 'vaccine-like' activity against malaria. By inhibiting entry of malaria parasites into host red blood cells (RBCs) - using polymer vesicle-based (polymersome) nanomimics of RBC membranes - the life cycle of the parasite is interrupted and the exposed parasites are accessible to the host immune system. Here, we describe how host cell-sized RBC membrane mimics, formed with the same block copolymers as nanomimics, also bind the corresponding malaria parasite ligand and whole malaria parasites, similar to nanomimics. This was demonstrated using fluorescence imaging techniques and confirms the suitability of giant polymersomes (GUVs) as simple mimics for RBC membranes.


Assuntos
Antimaláricos/metabolismo , Heparina/metabolismo , Proteína 1 de Superfície de Merozoito/metabolismo , Merozoítos/metabolismo , Oxazóis/síntese química , Plasmodium falciparum/metabolismo , Polímeros/síntese química , Antimaláricos/síntese química , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/metabolismo , Membrana Eritrocítica/química , Heparina/química , Humanos , Proteína 1 de Superfície de Merozoito/química , Microscopia de Fluorescência , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Lipossomas Unilamelares/síntese química , Lipossomas Unilamelares/metabolismo
7.
Macromol Rapid Commun ; 36(21): 1923-1928, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29971878

RESUMO

Malaria and other infectious diseases are major global public health problems, which need to be tackled using new technologies to cope with the lack of efficacious vaccines and emerging drug resistance. A recently developed anti-infectious concept based on nanomimics tested with Plasmodium falciparum is analyzed for the molecular parameters determining its applicability. Nanomimics-nanoscaled polymer-based mimics of host cell membranes-are designed with a reduced number of surface-exposed malaria parasite receptor molecules (heparin), resulting in less potent invasion inhibition as determined in antimalarial assays. In contrast, when shorter receptor molecules are used to form nanomimics, more molecules are needed to obtain nanomimic potency similar to nanomimics with longer receptor molecules. The interaction of heparin on nanomimics with the processed Plasmodium falciparum merozoite surface protein 1-42 (PfMSP142 ) have a high affinity, Kd = 12.1 ± 1.6 × 10-9 m, as measured by fluorescence cross-correlation spectroscopy (FCCS). This detailed characterization of nanomimics and their molecular variants are an important step towards defining and optimizing possible nanomimic therapies for infectious diseases.

8.
ACS Infect Dis ; 10(2): 732-745, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38271991

RESUMO

Severe malaria is a life-threatening condition that is associated with a high mortality. Severe Plasmodium falciparum infections are mediated primarily by high parasitemia and binding of infected red blood cells (iRBCs) to the blood vessel endothelial layer, a process known as sequestration. Here, we show that including the 5-amino-2-methoxybenzenesulfonate (AMBS) chemical modification in soluble biopolymers (polyglutamic acid and heparin) and poly(acrylic acid)-exposing nanoparticles serves as a universal tool to introduce a potent parasite invasion inhibitory function in these materials. Importantly, the modification did not add or eliminated (for heparin) undesired anticoagulation activity. The materials protected RBCs from invasion by various parasite strains, employing both major entry pathways. Two further P. falciparum strains, which either expose ligands for chondroitin sulfate A (CSA) or intercellular adhesion molecule 1 (ICAM-1) on iRBCs, were tested in antisequestration assays due to their relevance in placental and cerebral malaria, respectively. Antisequestration activity was found to be more efficacious with nanoparticles vs gold-standard soluble biopolymers (CSA and heparin) against both strains, when tested on receptor-coated dishes. The nanoparticles also efficiently inhibited and reversed the sequestration of iRBCs on endothelial cells. First, the materials described herein have the potential to reduce the parasite burden by acting at the key multiplication stage of reinvasion. Second, the antisequestration ability could help remove iRBCs from the blood vessel endothelium, which could otherwise cause vessel obstruction, which in turn can lead to multiple organ failure in severe malaria infections. This approach represents a further step toward creation of adjunctive therapies for this devastating condition to reduce morbidity and mortality.


Assuntos
Antimaláricos , Malária Cerebral , Feminino , Humanos , Gravidez , Plasmodium falciparum/metabolismo , Antimaláricos/farmacologia , Placenta , Células Endoteliais , Biopolímeros/metabolismo , Heparina/farmacologia
9.
J Am Chem Soc ; 135(24): 9204-12, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23705790

RESUMO

Block copolymer vesicles can be turned into nanoreactors when a catalyst is encapsulated in these hollow nanostructures. However the membranes of these polymersomes are most often impermeable to small organic molecules, while applications as nanoreactor, as artificial organelles, or as drug-delivery devices require an exchange of substances between the outside and the inside of polymersomes. Here, a simple and versatile method is presented to render polymersomes semipermeable. It does not require complex membrane proteins or pose requirements on the chemical nature of the polymers. Vesicles made from three different amphiphilic block copolymers (α,ω-hydroxy-end-capped poly(2-methyl-2-oxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PMOXA-b-PDMS-b-PMOXA), α,ω-acrylate-end-capped PMOXA-b-PDMS-b-PMOXA, and poly(ethylene oxide)-block-poly(butadiene) (PEO-b-PB)) were reacted with externally added 2-hydroxy-4'-2-(hydroxyethoxy)-2-methylpropiophenone under UV-irradiation. The photoreactive compound incorporated into the block copolymer membranes independently of their chemical nature or the presence of double bonds. This treatment of polymersomes resulted in substantial increase in permeability for organic compounds while not disturbing the size and the shape of the vesicles. Permeability was assessed by encapsulating horseradish peroxidase into vesicles and measuring the accessibility of substrates to the enzyme. The permeability of photoreacted polymersomes for ABTS, AEC, pyrogallol, and TMB was determined to be between 1.9 and 38.2 nm s(-1). It correlated with the hydrophobicity of the compounds. Moreover, fluorescent dyes were released at higher rates from permeabilized polymersomes compared to unmodified ones. The permeabilized nanoreactors retained their ability to protect encapsulated biocatalysts from degradation by proteases.

10.
Macromol Biosci ; 23(8): e2200424, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36447300

RESUMO

A significant factor hindering the clinical translation of polymersomes as vesicular nanocarriers is the limited availability of comparative studies detailing their interaction with blood plasma proteins compared to liposomes. Here, polymersomes are self-assembled via film rehydration, solvent exchange, and polymerization-induced self-assembly using five different block copolymers. The hydrophilic blocks are composed of anti-fouling polymers, poly(ethylene glycol) (PEG) or poly(2-methyl-2-oxazoline) (PMOXA), and all the data is benchmarked to PEGylated "stealth" liposomes. High colloidal stability in human plasma (HP) is confirmed for all but two tested nanovesicles. In situ fluorescence correlation spectroscopy measurements are then performed after incubating unlabeled nanovesicles with fluorescently labeled HP or the specific labeled plasma proteins, human serum albumin, and clusterin (apolipoprotein J). The binding of HP to PMOXA-polymersomes could explain their relatively short circulation times found previously. In contrast, PEGylated liposomes also interact with HP but accumulate high levels of clusterin, providing them with their known prolonged circulation time. The absence of significant protein binding for most PEG-polymersomes indicates mechanistic differences in protein interactions and associated downstream effects, such as cell uptake and circulation time, compared to PEGylated liposomes. These are key observations for bringing polymersomes closer to clinical translation and highlighting the importance of such comparative studies.


Assuntos
Clusterina , Lipossomos , Humanos , Polímeros/química , Polietilenoglicóis/química , Albumina Sérica Humana , Proteínas Sanguíneas , Espectrometria de Fluorescência
11.
Nat Chem ; 15(1): 110-118, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36344820

RESUMO

The circadian rhythm generates out-of-equilibrium metabolite oscillations that are controlled by feedback loops under light/dark cycles. Here we describe a non-equilibrium nanosystem comprising a binary population of enzyme-containing polymersomes capable of light-gated chemical communication, controllable feedback and coupling to macroscopic oscillations. The populations consist of esterase-containing polymersomes functionalized with photo-responsive donor-acceptor Stenhouse adducts (DASA) and light-insensitive semipermeable urease-loaded polymersomes. The DASA-polymersome membrane becomes permeable under green light, switching on esterase activity and decreasing the pH, which in turn initiates the production of alkali in the urease-containing population. A pH-sensitive pigment that absorbs green light when protonated provides a negative feedback loop for deactivating the DASA-polymersomes. Simultaneously, increased alkali production deprotonates the pigment, reactivating esterase activity by opening the membrane gate. We utilize light-mediated fluctuations of pH to perform non-equilibrium communication between the nanoreactors and use the feedback loops to induce work as chemomechanical swelling/deswelling oscillations in a crosslinked hydrogel. We envision possible applications in artificial organelles, protocells and soft robotics.


Assuntos
Nanotecnologia , Urease , Retroalimentação , Esterases
12.
ACS Nano ; 17(12): 11713-11728, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37279338

RESUMO

The intrinsic heterogeneity of many nanoformulations is currently challenging to characterize on both the single particle and population level. Therefore, there is great opportunity to develop advanced techniques to describe and understand nanomedicine heterogeneity, which will aid translation to the clinic by informing manufacturing quality control, characterization for regulatory bodies, and connecting nanoformulation properties to clinical outcomes to enable rational design. Here, we present an analytical technique to provide such information, while measuring the nanocarrier and cargo simultaneously with label-free, nondestructive single particle automated Raman trapping analysis (SPARTA). We first synthesized a library of model compounds covering a range of hydrophilicities and providing distinct Raman signals. These compounds were then loaded into model nanovesicles (polymersomes) that can load both hydrophobic and hydrophilic cargo into the membrane or core regions, respectively. Using our analytical framework, we characterized the heterogeneity of the population by correlating the signal per particle from the membrane and cargo. We found that core and membrane loading can be distinguished, and we detected subpopulations of highly loaded particles in certain cases. We then confirmed the suitability of our technique in liposomes, another nanovesicle class, including the commercial formulation Doxil. Our label-free analytical technique precisely determines cargo location alongside loading and release heterogeneity in nanomedicines, which could be instrumental for future quality control, regulatory body protocols, and development of structure-function relationships to bring more nanomedicines to the clinic.


Assuntos
Lipossomos , Nanomedicina , Humanos , Nanomedicina/métodos
13.
Adv Mater ; : e2300413, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36905683

RESUMO

Semiconducting polymer nanoparticles (SPNs) are explored for applications in cancer theranostics because of their high absorption coefficients, photostability, and biocompatibility. However, SPNs are susceptible to aggregation and protein fouling in physiological conditions, which can be detrimental for in vivo applications. Here, a method for achieving colloidally stable and low-fouling SPNs is described by grafting poly(ethylene glycol) (PEG) onto the backbone of the fluorescent semiconducting polymer, poly(9,9'-dioctylfluorene-5-fluoro-2,1,3-benzothiadiazole), in a simple one-step substitution reaction, postpolymerization. Further, by utilizing azide-functionalized PEG, anti-human epidermal growth factor receptor 2 (HER2) antibodies, antibody fragments, or affibodies are site-specifically "clicked" onto the SPN surface, which allows the functionalized SPNs to specifically target HER2-positive cancer cells. In vivo, the PEGylated SPNs are found to have excellent circulation efficiencies in zebrafish embryos for up to seven days postinjection. SPNs functionalized with affibodies are then shown to be able to target HER2 expressing cancer cells in a zebrafish xenograft model. The covalent PEGylated SPN system described herein shows great potential for cancer theranostics.

14.
Adv Healthc Mater ; 11(14): e2200036, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35481905

RESUMO

Antibiotic resistance is a severe global health threat and hence demands rapid action to develop novel therapies, including microscale drug delivery systems. Herein, a hierarchical microparticle system is developed to achieve bacteria-activated single- and dual-antibiotic drug delivery for preventing methicillin-resistant Staphylococcus aureus (MRSA) bacterial infections. The designed system is based on a capsosome structure, which consists of a mesoporous silica microparticle coated in alternating layers of oppositely charged polymers and antibiotic-loaded liposomes. The capsosomes are engineered and shown to release their drug payloads in the presence of MRSA toxins controlled by the Agr quorum sensing system. MRSA-activated single drug delivery of vancomycin and synergistic dual delivery of vancomycin together with an antibacterial peptide successfully kills MRSA in vitro. The capability of capsosomes to selectively deliver their cargo in the presence of bacteria, producing a bactericidal effect to protect the host organism, is confirmed in vivo using a Drosophila melanogaster MRSA infection model. Thus, the capsosomes serve as a versatile multidrug, subcompartmentalized microparticle system for preventing antibiotic-resistant bacterial infections, with potential applications to protect wounds or medical device implants from infections.


Assuntos
Toxinas Bacterianas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/química , Toxinas Bacterianas/farmacologia , Drosophila melanogaster , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Vancomicina/química , Vancomicina/farmacologia
15.
Adv Sci (Weinh) ; 9(27): e2200239, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35901502

RESUMO

Constructing artificial systems that effectively replace or supplement natural biological machinery within cells is one of the fundamental challenges underpinning bioengineering. At the sub-cellular scale, artificial organelles (AOs) have significant potential as long-acting biomedical implants, mimicking native organelles by conducting intracellularly compartmentalized enzymatic actions. The potency of these AOs can be heightened when judiciously combined with genetic engineering, producing highly tailorable biohybrid cellular systems. Here, the authors present a cost-effective, microliter scale (10 µL) polymersome (PSome) synthesis based on polymerization-induced self-assembly for the in situ encapsulation of Gaussia luciferase (GLuc), as a model luminescent enzyme. These GLuc-loaded PSomes present ideal features of AOs including enhanced enzymatic resistance to thermal, proteolytic, and intracellular stresses. To demonstrate their biomodulation potential, the intracellular luminescence of GLuc-loaded PSomes is coupled to optogenetically engineered cardiomyocytes, allowing modulation of cardiac beating frequency through treatment with coelenterazine (CTZ) as the substrate for GLuc. The long-term intracellular stability of the luminescent AOs allows this cardiostimulatory phenomenon to be reinitiated with fresh CTZ even after 7 days in culture. This synergistic combination of organelle-mimicking synthetic materials with genetic engineering is therefore envisioned as a highly universal strategy for the generation of new biohybrid cellular systems displaying unique triggerable properties.


Assuntos
Células Artificiais , Luciferases/análise , Luciferases/genética , Miócitos Cardíacos , Optogenética , Organelas/química
16.
J Extracell Vesicles ; 11(3): e12199, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35233930

RESUMO

A vaccine antigen, when launched as DNA or RNA, can be presented in various forms, including intracellular, secreted, membrane-bound, or on extracellular vesicles (EVs). Whether an antigen in one or more of these forms is superior in immune induction remains unclear. In this study, we used GFP as a model antigen and first compared the EV-loading efficiency of transmembrane domains (TMs) from various viral glycoproteins, and then investigated whether EV-bound GFP (EV-GFP) would enhance immune induction. Our data showed that GFP fused to viral TMs was successfully loaded onto the surface of EVs. In addition, GFP-bound EVs were predominantly associated with the exosome marker CD81. Immunogenicity study with EV-GFP-producing plasmids in mice demonstrated that antigen-specific IgG and IgA were significantly increased in EV-GFP groups, compared to soluble and intracellular GFP groups. Similarly, GFP-specific T cell response-related cytokines produced by antigen-stimulated splenocytes were also enhanced in mice immunized with EV-GFP constructs. Immunogenicity study with purified soluble GFP and GFP EVs further confirmed the immune enhancement property of EV-GFP in mice. In vitro uptake assays indicated that EV-GFP was more efficiently taken up than soluble GFP by mouse splenocytes and such uptake was B cell preferential. Taken together, our data indicate that viral TMs can efficiently load antigens onto the EV surface, and that EV-bound antigen enhances both humoral and cell-mediated antigen-specific responses.


Assuntos
Exossomos , Vesículas Extracelulares , Animais , Transporte Biológico , Citocinas/metabolismo , Exossomos/metabolismo , Glicoproteínas/metabolismo , Camundongos
17.
ACS Cent Sci ; 8(9): 1238-1257, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36188342

RESUMO

Infectious diseases continue to pose a substantial burden on global populations, requiring innovative broad-spectrum prophylactic and treatment alternatives. Here, we have designed modular synthetic polymer nanoparticles that mimic functional components of host cell membranes, yielding multivalent nanomimics that act by directly binding to varied pathogens. Nanomimic blood circulation time was prolonged by reformulating polymer-lipid hybrids. Femtomolar concentrations of the polymer nanomimics were sufficient to inhibit herpes simplex virus type 2 (HSV-2) entry into epithelial cells, while higher doses were needed against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given their observed virustatic mode of action, the nanomimics were also tested with malaria parasite blood-stage merozoites, which lose their invasive capacity after a few minutes. Efficient inhibition of merozoite invasion of red blood cells was demonstrated both in vitro and in vivo using a preclinical rodent malaria model. We envision these nanomimics forming an adaptable platform for developing pathogen entry inhibitors and as immunomodulators, wherein nanomimic-inhibited pathogens can be secondarily targeted to sites of immune recognition.

18.
Adv Mater ; 33(11): e2007738, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33554370

RESUMO

Probing endogenous molecular profiles is of fundamental importance to understand cellular function and processes. Despite the promise of programmable nucleic-acid-based aptasensors across the breadth of biomolecular detection, target-responsive aptasensors enabling intracellular detection are as of yet infrequently realized. Several challenges remain, including the difficulties in quantification/normalization of quencher-based intensiometric signals, stability issues of the probe architecture, and complex sensor operations often necessitating extensive structural modeling. Here, the biomimetic crystallization-empowered self-assembly of a tumor-targetable DNA-inorganic hybrid nanocomposite aptasensor is presented, which enables Förster resonance energy transfer (FRET)-based quantitative interpretation of changes in the cellular target abundance. Leveraging the design programmability and high-throughput fabrication of rolling circle amplification-driven DNA nanoarchitecture, this designer platform offers a method to self-assemble a robust nanosensor from a multifunctionality-encoded template that includes a cell-targeting aptamer, a ratiometric aptasensor, and a cholesterol-decorating element. Taking prostate cancer cells and intracellular adenosine triphosphate molecules as a model system, a synergistic effect in the targeted delivery by cholesterol and aptamers, and the feasibility of quantitative intracellular aptasensing are demonstrated. It is envisioned that this approach provides a highly generalizable strategy across wide-ranging target systems toward a biologically deliverable nanosensor that enables quantitative monitoring of the abundance of endogenous biomolecules.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Colesterol/química , DNA/química , Nanoestruturas/química , Linhagem Celular Tumoral , DNA/metabolismo , Humanos , Limite de Detecção
19.
J Mater Chem B ; 8(38): 8894-8907, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33026394

RESUMO

Many diseases are associated with the dysregulated activity of enzymes, such as matrix metalloproteinases (MMPs). This dysregulation can be leveraged in drug delivery to achieve disease- or site-specific cargo release. Self-assembled polymeric nanoparticles are versatile drug carrier materials due to the accessible diversity of polymer chemistry. However, efficient loading of sensitive cargo, such as proteins, and introducing functional enzyme-responsive behaviour remain challenging. Herein, peptide-crosslinked, temperature-sensitive nanogels for protein delivery were designed to respond to MMP-7, which is overexpressed in many pathologies including cancer and inflammatory diseases. The incorporation of N-cyclopropylacrylamide (NCPAM) into N-isopropylacrylamide (NIPAM)-based copolymers enabled us to tune the polymer lower critical solution temperature from 33 to 44 °C, allowing the encapsulation of protein cargo and nanogel-crosslinking at slightly elevated temperatures. This approach resulted in nanogels that were held together by MMP-sensitive peptides for enzyme-specific protein delivery. We employed a combination of cryogenic transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), small angle neutron scattering (SANS), and fluorescence correlation spectroscopy (FCS) to precisely decipher the morphology, self-assembly mechanism, enzyme-responsiveness, and model protein loading/release properties of our nanogel platform. Simple variation of the peptide linker sequence and combining multiple different crosslinkers will enable us to adjust our platform to target specific diseases in the future.


Assuntos
Portadores de Fármacos/química , Metaloproteinase 7 da Matriz/metabolismo , Nanogéis/química , Peptídeos/química , Resinas Acrílicas/síntese química , Resinas Acrílicas/química , Resinas Acrílicas/toxicidade , Animais , Bovinos , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Camundongos , Nanogéis/toxicidade , Peptídeos/síntese química , Peptídeos/metabolismo , Peptídeos/toxicidade , Células RAW 264.7 , Soroalbumina Bovina/química
20.
ACS Nano ; 14(12): 17333-17353, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33290039

RESUMO

Antibiotic resistance is a serious global health problem necessitating new bactericidal approaches such as nanomedicines. Dendrimersomes (DSs) have recently become a valuable alternative nanocarrier to polymersomes and liposomes due to their molecular definition and synthetic versatility. Despite this, their biomedical application is still in its infancy. Inspired by the localized antimicrobial function of neutrophil phagosomes and the versatility of DSs, a simple three-component DS-based nanoreactor with broad-spectrum bactericidal activity is presented. This was achieved by encapsulation of glucose oxidase (GOX) and myeloperoxidase (MPO) within DSs (GOX-MPO-DSs), self-assembled from an amphiphilic Janus dendrimer, that possesses a semipermeable membrane. By external addition of glucose to GOX-MPO-DS, the production of hypochlorite (-OCl), a highly potent antimicrobial, by the enzymatic cascade was demonstrated. This cascade nanoreactor yielded a potent bactericidal effect against two important multidrug resistant pathogens, Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), not observed for H2O2 producing nanoreactors, GOX-DS. The production of highly reactive species such as -OCl represents a harsh bactericidal approach that could also be cytotoxic to mammalian cells. This necessitates the development of strategies for activating -OCl production in a localized manner in response to a bacterial stimulus. One option of locally releasing sufficient amounts of substrate using a bacterial trigger (released toxins) was demonstrated with lipidic glucose-loaded giant unilamellar vesicles (GUVs), envisioning, e.g., implant surface modification with nanoreactors and GUVs for localized production of bactericidal agents in the presence of bacterial growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA