Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diam Relat Mater ; 127: 109149, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35677893

RESUMO

The progressive and fatal outbreak of some diseases such as cancer and coronavirus necessitates using advanced materials to bring such devastating illnesses under control. In this study, graphene oxide (GO) is decorated by superparamagnetic iron oxide nanoparticles (SPION) (GO/SPION) as well as polyethylene glycol functionalized SPION (GO/SPION@PEG), and chitosan functionalized SPION (GO/SPION@CS). Field emission scanning electron microscopic (FESEM) images show the formation of high density uniformly distributed SPION nanoparticles on the surface of GO sheets. The structural and chemical composition of nanostructures is confirmed by X-ray diffraction and Fourier transform infrared spectroscopy. The saturation magnetization of GO/SPION, GO/SPION@PEG and GO- SPION@CS are found to be 20, 19 and 8 emu/g using vibrating sample magnetometer. Specific absorption rate (SAR) values of 305, 283, and 199 W/g and corresponding intrinsic loss power (ILP) values of 9.4, 8.7, and 6.2 nHm2kg-1 are achieved for GO/SPION, GO/SPION@PEG and GO/SPION@CS, respectively. The In vitro cytotoxicity assay indicates higher than 70% cell viability for all nanostructures at 100, 300, and 500 ppm after 24 and 72 h. Additionally, cancerous cell (EJ138 human bladder carcinoma) ablation is observed using functionalized GO/SPION under applied magnetic field. More than 50% cancerous cell death has been achieved for GO/SPION@PEG at 300 ppm concentration. Furthermore, Surrogate virus neutralization test is applied to investigate neutralizing property of the synthesized nanostructures through analysis of SARS-CoV-2 receptor-binding domain and human angiotensin-converting enzyme 2 binding. The highest level of SARS-CoV-2 virus inhibition is related to GO/SPION@CS (86%) due to the synergistic exploitation of GO and chitosan. Thus, GO/SPION and GO/SPION@PEG with higher SAR and ILP values could be beneficial for cancer treatment, while GO/SPION@CS with higher virus suppression has potential to use against coronaviruses. Thus, the developed nanocomposites have a potential in the efficient treatment of cancer and coronavirus.

2.
Sci Rep ; 14(1): 14010, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890349

RESUMO

Hybrid structures made of natural-synthetic polymers have been interested due to high biological features combining promising physical-mechanical properties. In this research, a hybrid dressing consisting of a silk fibroin (SF)/polyvinyl alcohol (PVA) nanofibers and sodium alginate (SA)/gum tragacanth (GT) hydrogel incorporating cardamom extract as an antibacterial agent was prepared. Accordingly, SF was extracted from cocoons followed by electrospinning in blend form with PVA (SF/PVA ratio: 1:1) under the voltage of 18 kV and the distances of 15 cm. The SEM images confirmed the formation of uniform, bead free fibers with the average diameter of 199 ± 28 nm. FTIR and XRD results revealed the successful extraction of SF and preparation of mixed fibrous mats. Next, cardamom oil extract-loaded SA/GT hydrogel was prepared and the nanofibrous structure was placed on the surface of hydrogel. SEM analysis depicted the uniform morphology of hybrid structure with desirable matching between two layers. TGA analysis showed desired thermal stability. The swelling ratio was found to be 1251% after 24 h for the hybrid structure and the drug was released without any initial burst. MTT assay and cell attachment results showed favorable biocompatibility and cell proliferation on samples containing extract, and antibacterial activity values of 85.35% against S. aureus and 75% against E. coli were obtained as well. The results showed that the engineered hybrid nanofibrous-hydrogel film structure incorporating cardamom oil extract could be a promising candidate for wound healing applications and skin tissue engineering.


Assuntos
Alginatos , Antibacterianos , Elettaria , Fibroínas , Hidrogéis , Nanofibras , Extratos Vegetais , Álcool de Polivinil , Tragacanto , Alginatos/química , Nanofibras/química , Fibroínas/química , Álcool de Polivinil/química , Hidrogéis/química , Tragacanto/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Elettaria/química , Animais , Escherichia coli/efeitos dos fármacos , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Materiais Biocompatíveis/química
3.
Sci Rep ; 13(1): 12004, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491480

RESUMO

Restoration of nerve tissue remains highly challenging, mainly due to the limited regeneration capacity of the nervous system and the development of fibrosis. This limitation necessitates designing new nerve guidance channel to promote nerve repairing. In this study, we developed a novel core/shell conduit to induce PC12 differentiation. Co-electrospinning method was utilized to produce a fibrous shell containing polycaprolactone/polyvinylidene fluoride PCL/PVDF, gelatin and polyaniline/graphene (PAG) nanocomposite. The core section of the conduit was filled with chitosan-gelatin hydrogel containing PAG and ZnO nanoparticles. Such conduit shows antibacterial activity, electrical conductivity and piezoelectric property. The effect of such engineered conduit on PC12 differentiation was investigated by analyzing differentiation markers Nestin and microtubule-associated protein 2 (MAP2) through immunocytochemistry and PCR-RT techniques. The result revealed that such conduit could significantly induce Nestin and MAP2 gene expression in the PC12 cells and, thus, it is a viable option for effective cell differentiation and nerve regeneration.


Assuntos
Gelatina , Alicerces Teciduais , Ratos , Animais , Nestina/genética , Gelatina/química , Células PC12 , Alicerces Teciduais/química , Regeneração Nervosa/fisiologia , Diferenciação Celular , Nervo Isquiático/fisiologia
4.
Sci Rep ; 13(1): 919, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650249

RESUMO

Considering the great potential of egg yolk oil (EYO) in management of burn wounds and superb biological properties of polycaprolactone (PCL) and polyethylene glycol (PEG), hereby, a PCL-PEG-EYO scaffold was developed by electrospinning method for burn healing. The physico-chemical characterizations were performed using SEM, FTIR and contact angle tests. The biological properties of the fabricated scaffolds were evaluated by antibacterial test, in vitro cell culturing, MTT assay and in vivo experiments. The SEM images of PCL-PEG-EYO nanofibers demonstrated a uniform bead-free morphology with 191 ± 61 nm diameter. The fabricated scaffold revealed hydrophilicity with the water contact angel of 77°. No cytotoxicity was observed up to 7 days after cell culturing onto the PCL-PEG-EYO nanofibrous surface. The presence of EYO in the PCL-PEG-EYO scaffold meaningfully improved the cell viability, proliferation and attachment compared to PCL-PEG scaffold. Moreover, the PCL-PEG-EYO scaffolds demonstrated antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa bacteria strain. Finally, a statistically significant enhancement in wound closure, re-epithelialization, angiogenesis and collagen synthesis was observed at the end of 21-day treatment period using PCL-PEG-EYO nanofibrous scaffold. Overall, the PCL-PEG-EYO nanofibrous scaffolds demonstrated a great potential in management of full thickness burn wounds in vivo.


Assuntos
Queimaduras , Nanofibras , Humanos , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Nanofibras/química , Polietilenoglicóis/química , Gema de Ovo , Poliésteres/química , Antibacterianos/farmacologia , Queimaduras/tratamento farmacológico , Aceleração
5.
Gels ; 9(8)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37623127

RESUMO

A cutaneous wound is caused by various injuries in the skin, which can be wrapped with an efficient dressing. Electrospinning is a straightforward adjustable technique that quickly and continuously generates nanofibrous wound dressings containing antibacterial and anti-inflammatory agents to promote wound healing. The present study investigated the physicochemical and biological properties of bromelain (BRO)- and silver nanoparticle (Ag NPs)-loaded gel-based electrospun polycaprolactone/chitosan (PCL/CS) nanofibrous dressings for wound-healing applications. Electron microscopy results showed that the obtained nanofibers (NFs) had a uniform and homogeneous morphology without beads with an average diameter of 176 ± 63 nm. The FTIR (Fourier transform infrared) analysis exhibited the loading of the components. Moreover, adding BRO and Ag NPs increased the tensile strength of the NFs up to 4.59 MPa. BRO and Ag NPs did not significantly affect the hydrophilicity and toxicity of the obtained wound dressing; however, the antibacterial activity against E. coli and S. aureus bacteria was significantly improved. The in vivo study showed that the wound dressing containing BRO and Ag NPs improved the wound-healing process within one week compared to other groups. Therefore, gel-based PCL/CS nanofibrous dressings containing BRO and Ag NPs could be a promising solution for healing skin wounds.

6.
In Vitro Cell Dev Biol Anim ; 59(6): 401-409, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37405626

RESUMO

Regulation of mesenchymal stem cell (MSC) fate for targeted cell therapy applications has been a subject of interest, particularly for tissues such as tendons that possess a marginal regenerative capacity. Control of MSCs' fate into the tendon-specific lineage has mainly been achieved by implementation of chemical growth factors. Mechanical stimuli or 3-dimensional (D) scaffolds have been used as an additional tool for the differentiation of MSCs into tenocytes, but oftentimes, they require a sophisticated bioreactor or a complex scaffold fabrication technique which reduces the feasibility of the proposed method to be used in practice. Here, we used nanovibration to induce the differentiation of MSCs toward the tenogenic fate solely by the use of nanovibration and without the need for growth factors or complex scaffolds. MSCs were cultured on 2D cell culture dishes that were connected to piezo ceramic arrays to apply nanovibration (30-80 nm and 1 kHz frequency) over 7 and 14 d. We observed that nanovibration resulted in significant overexpression of tendon-related markers in both gene expression and protein expression levels, while there was no significant differentiation into adipose and cartilage lineages. These findings could be of assistance in the mechanoregulation of MSCs for stem cell engineering and regenerative medicine applications.


Assuntos
Células-Tronco Mesenquimais , Engenharia Tecidual , Animais , Engenharia Tecidual/métodos , Vibração , Diferenciação Celular , Cordão Umbilical
7.
Int J Biol Macromol ; 167: 796-806, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33278440

RESUMO

The design of 3D hydrogel constructs to elicit highly controlled cell response is a major field of interest in developing tissue engineering. The bioactivity of encapsulated cells inside pure alginate hydrogel is limited by its relatively inertness. Combining short nanofibers within a hydrogel serves as a promising method to develop a cell friendly environment mimicking the extracellular matrix. In this paper, we fabricated alginate hydrogels incorporating different magnetic short nanofibers (M.SNFs) content for olfactory ecto-mesenchymal stem cells (OE-MSCs) encapsulation. Wet-electrospun gelatin and superparamagnetic iron oxide nanoparticles (SPIONs) nanocomposite nanofibers were chopped using sonication under optimized conditions and subsequently embedded in alginate hydrogels. The storage modulus of hydrogel without M.SNFs as well as with 1 and 5 mg/mL of M.SNFs were in the range of nerve tissue. For cell encapsulation, OE-MSCs were used as a new hope for neuronal regeneration due to their neural crest origin. Resazurin analyses and LIVE/DEAD staining confirmed that the composite hydrogels containing M.SNFs can preserve the cell viability after 7 days. Moreover, the proliferation rate was enhanced in M.SNF/hydrogels compared to alginate hydrogel. The presence of SPIONs in the short nanofibers can accelerate neural-like differentiation of OE-MSCs rather than the sample without SPIONs.


Assuntos
Alginatos/química , Hidrogéis/química , Nanopartículas de Magnetita/química , Nanofibras/química , Regeneração Nervosa , Mucosa Olfatória/citologia , Células-Tronco/efeitos dos fármacos , Técnicas de Cultura de Células , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas Magnéticas de Óxido de Ferro/ultraestrutura , Células-Tronco Mesenquimais/citologia , Nanofibras/ultraestrutura , Reologia , Engenharia Tecidual , Alicerces Teciduais , Difração de Raios X
8.
Biomed Mater ; 16(6)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34670200

RESUMO

A challenging approach of three-dimensional (3D)-biomimetic scaffold design for bone tissue engineering is to improve scaffold bioactivity and mechanical properties. We aimed to design and fabricate 3D-polycaprolactone (PCL)-based nanocomposite scaffold containing a high concentration homogeneously distributed carbonated-nanohydroxyapatite (C-nHA)-particles in combination with immobilized-collagen to mimic real bone properties. PCL-scaffolds without/with C-nHA at 30%, 45%, and 60% (wt/wt) were 3D-printed. PCL/C-nHA60%-scaffolds were surface-modified by NaOH-treatment and collagen-immobilization. Physicomechanical and biological properties were investigated experimentally and by finite-element (FE) modeling. Scaffold surface-roughness enhanced by increasing C-nHA (1.7 - 6.1-fold), but decreased by surface-modification (0.6-fold). The contact angle decreased by increasing C-nHA (0.9 - 0.7-fold), and by surface-modification (0.5-fold). The zeta potential decreased by increasing C-nHA (3.2-9.9-fold). Average elastic modulus, compressive strength, and reaction force enhanced by increasing C-nHA and by surface-modification. FE modeling revealed that von Mises stress distribution became less homogeneous by increasing C-nHA, and by surface-modification. Maximal von Mises stress for 2% compression strain in all scaffolds did not exceed yield stress for bulk-material. 3D-printed PCL/C-nHA60% with surface-modification enhanced pre-osteoblast spreading, proliferation, collagen deposition, alkaline phosphatase activity, and mineralization. In conclusion, a novel biomimetic 3D-printed PCL-scaffold containing a high concentration C-nHA with surface-modification was successfully fabricated. It exhibited superior physicomechanical and biological properties, making it a promising biomaterial for bone tissue engineering.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Biomimética , Colágeno , Durapatita , Osteogênese , Poliésteres , Impressão Tridimensional , Engenharia Tecidual/métodos
9.
Prog Biomater ; 9(3): 139-151, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32989678

RESUMO

Artemisia annua L. has been utilized for the first time in a nanofibrous wound dressing composition. The extract of this valuable plant provides anti-inflammatory, anti-bacterial and anti-microbial properties which can be considered as a promising medicinal component in therapeutic applications. In the present work, Artemisia annua L. was picked up from Gorgan forest area of Northern Iran and its extract was prepared by methanol as the extraction solvent. In the fabrication of wound dressing, Artemisia annua L. extract was mixed with gelatin and a nanofibrous structure was formed by electrospinning technique. To have a wound dressing with acceptable stability and optimum mechanical properties, this biologically active layer was formed on a PCL nanofibrous base layer. The fabricated double-layer wound dressing was analyzed chemically, structurally, mechanically and biologically. ATR-FTIR spectra of the prepared wound dressing contain functional groups of Artemisia annua L. as peroxide groups, etc. SEM micrographs of electrospun gelatin/Artemisia annua L. confirmed the successful electrospinning process for producing Artemisia annua L.-containing nanofibers with mean diameter of 242.00 ± 67.53 nm. In vitro Artemisia annua L. release study of the fabricated wound dressings suggests a sustain release over 7 days for the crosslinked sample. In addition, evaluation of the in vitro structural stability of the prepared wound dressings confirmed the stability of the crosslinked nanofibrous structures in PBS solution environment. Biological study of the Artemisia annua L.-containing wound dressing revealed no cytotoxicity, good proliferation and attachment of the seeded fibroblasts cells and acceptable antibacterial property against Staphylococcus aureus bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA