Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 35(2): e21158, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33150680

RESUMO

Prevention of kidney fibrosis is an essential requisite for effective therapy in preventing chronic kidney disease (CKD). Here, we identify Old astrocyte specifically induced substance (OASIS)/cAMP responsive element-binding protein 3-like 1 (CREB3l1), a CREB/ATF family transcription factor, as a candidate profibrotic gene that drives the final common pathological step along the fibrotic pathway in CKD. Although microarray data from diseased patient kidneys and fibrotic mouse model kidneys both exhibit OASIS/Creb3l1 upregulation, the pathophysiological roles of OASIS in CKD remains unknown. Immunohistochemistry revealed that OASIS protein was overexpressed in human fibrotic kidney compared with normal kidney. Moreover, OASIS was upregulated in murine fibrotic kidneys, following unilateral ureteral obstruction (UUO), resulting in an increase in the number of OASIS-expressing pathological myofibroblasts. In vitro assays revealed exogenous TGF-ß1 increased OASIS expression coincident with fibroblast-to-myofibroblast transition and OASIS contributed to TGF-ß1-mediated myofibroblast migration and increased proliferation. Significantly, in vivo kidney fibrosis induced via UUO or ischemia/reperfusion injury was ameliorated by systemic genetic knockout of OASIS, accompanied by reduced myofibroblast proliferation. Microarrays revealed that the transmembrane glycoprotein Bone marrow stromal antigen 2 (Bst2) expression was reduced in OASIS knockout myofibroblasts. Interestingly, a systemic anti-Bst2 blocking antibody approach attenuated kidney fibrosis in normal mice but not in OASIS knockout mice after UUO, signifying Bst2 functions downstream of OASIS. Finally, myofibroblast-restricted OASIS conditional knockouts resulted in resistance to kidney fibrosis. Taken together, OASIS in myofibroblasts promotes kidney fibrosis, at least in part, via increased Bst2 expression. Thus, we have identified and demonstrated that OASIS signaling is a novel regulator of kidney fibrosis.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Rim/metabolismo , Rim/patologia , Proteínas do Tecido Nervoso/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Antígenos CD/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Modelos Animais de Doenças , Fibrose , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miofibroblastos/metabolismo , Proteínas do Tecido Nervoso/genética , Transdução de Sinais/genética , Transfecção , Regulação para Cima/genética
2.
Biochem Biophys Res Commun ; 571: 88-95, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34311199

RESUMO

The number of patients with chronic kidney disease (CKD) is increasing worldwide. When kidneys are exposed to severe injury, tubular cell death occurs and kidney fibrosis progresses by activating fibroblasts and myofibroblasts (referred to as (myo)fibroblasts), leading to CKD; however, the pathological and molecular mechanisms underlying CKD, including kidney fibrosis, remain obscure. In the present study, we focused on a transcription factor PBX/Knotted Homeobox 2 (PKNOX2) in kidney fibrosis. The transcript and protein expression of PKNOX2 was upregulated in fibrotic kidneys after unilateral ureteral obstruction (UUO). Importantly, immunofluorescence microscopic analysis revealed that the number of PKNOX2-expressing myofibroblasts was increased, whereas the expression of PKNOX2 was decreased in proximal tubular epithelial cells after UUO. In (myo)fibroblasts, PKNOX2 was induced by TGF-ß1. Knockdown of PKNOX2 using shRNA lentiviral system reduced the viability of (myo)fibroblasts either in the presence or absence of TGF-ß1, accompanied by increased apoptosis. Moreover, PKNOX2 knockdown decreased TGF-ß1-induced migration of myofibroblasts and differentiation of fibroblasts into myofibroblasts. Significantly, knockdown of PKNOX2 also decreased the viability and increased apoptosis of tubular epithelial cells. Collectively, PKNOX2 regulates the function of (myo)fibroblasts and the viability of proximal tubular epithelial cells in progression of kidney fibrosis.


Assuntos
Fibrose/metabolismo , Proteínas de Homeodomínio/metabolismo , Túbulos Renais/metabolismo , Miofibroblastos/metabolismo , Fatores de Transcrição/metabolismo , Obstrução Ureteral/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Fibrose/patologia , Proteínas de Homeodomínio/genética , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/patologia , Fatores de Transcrição/genética , Obstrução Ureteral/patologia
3.
Sci Rep ; 12(1): 16656, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198906

RESUMO

Runt-related transcription factor 2 (Runx2), a regulator of osteoblast differentiation, is pathologically involved in vascular calcification; however, the significance of Runx2 in cardiac homeostasis remains unclear. Here, we investigated the roles of Runx2 in cardiac remodeling after myocardial infarction (MI). The expression of Runx2 mRNA and protein was upregulated in murine hearts after MI. Runx2 was expressed in heart-infiltrating myeloid cells, especially in macrophages, at the border zone of post-infarct myocardium. To analyze the biological functions of Runx2 in cardiac remodeling, myeloid cell-specific Runx2 deficient (CKO) mice were exposed to MI. After MI, ventricular weight/tibia length ratio was increased in CKO mice, concomitant with severe cardiac dysfunction. Cardiac fibrosis was exacerbated in CKO mice, consistent with the upregulation of collagen 1a1 expression. Mechanistically, immunohistochemical analysis using anti-CD31 antibody showed that capillary density was decreased in CKO mice. Additionally, conditioned culture media of myeloid cells from Runx2 deficient mice exposed to MI induced the tube formation of vascular endothelial cells to a lesser extent than those from control mice. RNA-sequence showed that the expression of pro-angiogenic or anti-angiogenic factors was altered in macrophages from Runx2-deficient mice. Collectively, Runx2+ myeloid cells infiltrate into post-infarct myocardium and prevent adverse cardiac remodeling, at least partially, by regulating endothelial cell function.


Assuntos
Infarto do Miocárdio , Remodelação Ventricular , Animais , Colágeno/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Meios de Cultivo Condicionados/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Remodelação Ventricular/genética
4.
Gene ; 788: 145664, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33887371

RESUMO

The angiogenic gene therapy is an attractive approach for the treatment of ischemic muscle diseases, including peripheral arterial disease and ischemic heart diseases. Although a variety of gene transfer methods have been developed, the efficiency of gene transfer is still limited. We have been developing the needleless high-energy bioinjector device, Pyro-drive Jet Injector (PJI), based on pyrotechnics using a combination of ignition powder and gunpowder, however, the utility of PJI in gene transfer into muscle tissues remains unclear. pcDNA3.1 plasmid containing Flag was injected to the thigh muscles of C57BL/6J mice using PJI or needle, as a control. Histological analysis demonstrated that the protein expression of Flag was observed in a wider range in PJI group than in needle group. To assess the validity of PJI for gene therapy, pcDNA3.1-human fibroblast growth factor 2 (FGF2), which has angiogenic activity and tissue protective properties, was injected into the ischemic thigh muscles with PJI or needle. ELISA assay revealed that the protein expression of FGF2 was increased in the thigh muscle tissues by PJI-mediated gene delivery. Significantly, histological analyses revealed that muscle fiber cross-sectional area and the number of endothelial marker CD31 (+) cells was increased in ischemic hind-limb tissues of the PJI-FGF2 group but not in those of needle-FGF2 group. To expand the applicability of the PJI-mediated gene transfer, pcDNA3.1-venus plasmid was injected into murine hearts with PJI or needle. PJI method was successful in gene transfer into murine hearts, especially into cardiomyocytes, with high efficiency when compared to needle method. Collectively, the non-needle, non-liposomal and non-viral gene transfer by PJI could be a novel therapeutic approach for muscle diseases.


Assuntos
Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Técnicas de Transferência de Genes/instrumentação , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Animais , Linhagem Celular , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Terapia Genética/instrumentação , Vetores Genéticos/administração & dosagem , Vetores Genéticos/farmacologia , Membro Posterior , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/terapia , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA