RESUMO
Lung cancer persists to contribute to one-quarter of cancer-associated deaths. Among the different histologies, non-small cell lung cancer (NSCLC) alone accounts for 85% of the cases. The development of therapies involving immune checkpoint inhibitors and angiogenesis inhibitors has increased patients' survival probability and reduced mortality rates. Developing targeted therapies against essential genetic alterations also translates to better treatment strategies. But the benefits still seem farfetched due to the development of drug resistance and refractory tumors. In this review, we have highlighted the interplay of different tumor microenvironment components, essentially discussing the chemokine families (CC, CXC, C, and CX3C) that regulate the tumor biology in NSCLC and promote tumor growth, metastasis, and associated heterogeneity. The development of therapeutics and prognostic markers is a complex and multipronged approach. However, some essential chemokines can act as critical players for being considered potential prognostic markers and therapeutic targets.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Prognóstico , Microambiente Tumoral/genética , QuimiocinasRESUMO
Cancer stem/tumor-initiating cells display stress tolerance and metabolic flexibility to survive in a harsh environment with limited nutrient and oxygen availability. The molecular mechanisms underlying this phenomenon could provide targets to prevent metabolic adaptation and halt cancer progression. Here, we showed in cultured cells and live human surgical biopsies of non-small cell lung cancer that nutrient stress drives the expression of the epithelial cancer stem cell marker integrin αvß3 via upregulation of the ß3 subunit, resulting in a metabolic reprogramming cascade that allows tumor cells to thrive despite a nutrient-limiting environment. Although nutrient deprivation is known to promote acute, yet transient, activation of the stress sensor AMP-activated protein kinase (AMPK), stress-induced αvß3 expression via Src activation unexpectedly led to secondary and sustained AMPK activation. This resulted in the nuclear localization of peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC1α) and upregulation of glutamine metabolism, the tricarboxylic acid cycle, and oxidative phosphorylation. Pharmacological or genetic targeting of this axis prevented lung cancer cells from evading the effects of nutrient stress, thereby blocking tumor initiation in mice following orthotopic implantation of lung cancer cells. These findings reveal a molecular pathway driven by nutrient stress that results in cancer stem cell reprogramming to promote metabolic flexibility and tumor initiation. SIGNIFICANCE: Upregulation of integrin αvß3, a cancer stem cell marker, in response to nutrient stress activates sustained AMPK/PGC1α signaling that induces metabolic reprogramming in lung cancer cells to support their survival. See related commentary by Rainero, p. 1543.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Integrina alfaVbeta3 , Neoplasias Pulmonares , Regulação para Cima , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Animais , Integrina alfaVbeta3/metabolismo , Camundongos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Estresse Fisiológico , Nutrientes/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão GênicaRESUMO
BACKGROUND: The study summarizes the potential use of immunotherapy for BRAF-mutated papillary thyroid cancer (PTC) by analyzing the immune profile of City of Hope PTC patient samples and comparing them to the thyroid dataset available in the TCGA database. MATERIALS AND METHODS: PTC cases with available formalin-fixed paraffin-embedded archived tumor tissue were identified. RNA was extracted from the tumor tissue and analyzed by NanoString to evaluate their immune gene expression profile. Immunohistochemistry was used to determine the expression of immune suppressive genes and lymphocytic infiltration into the tumor tissue. Thyroid cancer cell lines (MDA-T32, MDA-T68, MDA-T85, and MDA-T120) were used to determine the correlation between the BRAF inhibition and CD274 expression. RESULTS: The study found that PTC cases with BRAF mutations had higher expression of immune checkpoint markers CD274 and CTLA4, as well as higher tumor-infiltrating lymphocytes, particularly CD4+T cells. Additionally, the study identified immunosuppressive markers expressed by tumor cells like CD73, CD276, and CD200 that could be targeted for immunotherapy. Further experiments using PTC cell lines lead to the conclusion that CD274 expression correlates with BRAF activity and that inhibitors of BRAF could potentially be used in combination with immunotherapy to treat PTC. CONCLUSIONS: These findings suggest that PTC cases with BRAF mutations or high expression may be correlated with an immune hot signature and could benefit from immunotherapeutic strategies.
Assuntos
Biomarcadores Tumorais , Proteínas Proto-Oncogênicas B-raf , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/imunologia , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/imunologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Masculino , Proteínas Proto-Oncogênicas B-raf/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Feminino , Pessoa de Meia-Idade , Mutação , Imunoterapia/métodos , Adulto , Linhagem Celular TumoralRESUMO
Translational research in medicine, defined as the transfer of knowledge and discovery from the basic sciences to the clinic, is typically achieved through interactions between members across scientific disciplines to overcome the traditional silos within the community. Thus, translational medicine underscores 'Team Medicine', the partnership between basic science researchers and clinicians focused on addressing a specific goal in medicine. Here, we highlight this concept from a City of Hope perspective. Using cisplatin resistance in non-small cell lung cancer (NSCLC) as a paradigm, we describe how basic research scientists, clinical research scientists, and medical oncologists, in true 'Team Science' spirit, addressed cisplatin resistance in NSCLC and identified a previously approved compound that is able to alleviate cisplatin resistance in NSCLC. Furthermore, we discuss how a 'Team Medicine' approach can help to elucidate the mechanisms of innate and acquired resistance in NSCLC and develop alternative strategies to overcome drug resistance.
RESUMO
This study investigates the role of integrin ß4 (ITGB4) and stemness-associated factor SOX2 in platinum resistance in lung squamous cell carcinoma (LUSC). The expression of SOX2 and ITGB4 is found to be high in all LUSC subtypes, but the impact of ITGB4 expression on overall patient survival varies by subtype. Cancer stem cells (CSCs) isolated from LUSC patients were found to be resistant to cisplatin, but knocking down ITGB4 or SOX2 sensitized them to cisplatin. Carfilzomib (CFZ) synergized with cisplatin and suppressed CSC growth by inhibiting ITGB4 and SOX2 expression. Additionally, CFZ was found to inhibit SOX2 expression epigenetically by inhibiting histone acetylation at the SOX2 promoter site. CFZ also suppressed the growth of SOX2-dependent small cell lung cancer cells in vitro and in vivo. The study highlights the unique function of CFZ as a transcriptional suppressor of SOX2, independent of its proteasome inhibitory function.
RESUMO
Inherent or acquired resistance to sotorasib poses a substantialt challenge for NSCLC treatment. Here, we demonstrate that acquired resistance to sotorasib in isogenic cells correlated with increased expression of integrin ß4 (ITGB4), a component of the focal adhesion complex. Silencing ITGB4 in tolerant cells improved sotorasib sensitivity, while overexpressing ITGB4 enhanced tolerance to sotorasib by supporting AKT-mTOR bypass signaling. Chronic treatment with sotorasib induced WNT expression and activated the WNT/ß-catenin signaling pathway. Thus, silencing both ITGB4 and ß-catenin significantly improved sotorasib sensitivity in tolerant, acquired, and inherently resistant cells. In addition, the proteasome inhibitor carfilzomib (CFZ) exhibited synergism with sotorasib by down-regulating ITGB4 and ß-catenin expression. Furthermore, adagrasib phenocopies the combination effect of sotorasib and CFZ by suppressing KRAS activity and inhibiting cell cycle progression in inherently resistant cells. Overall, our findings unveil previously unrecognized nongenetic mechanisms underlying resistance to sotorasib and propose a promising treatment strategy to overcome resistance.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Humanos , Antivirais , beta Catenina/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Resistencia a Medicamentos Antineoplásicos/genéticaRESUMO
KRAS is a frequent oncogenic driver in solid tumors, including non-small cell lung cancer (NSCLC). It was previously thought to be an "undruggable" target due to the lack of deep binding pockets for specific small-molecule inhibitors. A better understanding of the mechanisms that drive KRAS transformation, improved KRAS-targeted drugs, and immunological approaches that aim at yielding immune responses against KRAS neoantigens have sparked a race for approved therapies. Few treatments are available for KRAS mutant NSCLC patients, and several approaches are being tested in clinicals trials to fill this void. Here, we review promising therapeutics tested for KRAS mutant NSCLC.
Assuntos
Antígenos de Neoplasias/genética , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/genética , Antígenos de Neoplasias/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Desenho de Fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Terapia de Alvo Molecular/métodos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de SinaisRESUMO
Drug resistance, a major challenge in cancer therapy, is typically attributed to mutations and genetic heterogeneity. Emerging evidence suggests that dynamic cellular interactions and group behavior also contribute to drug resistance. However, the underlying mechanisms remain poorly understood. Here, we present a new mathematical approach with game theoretical underpinnings that we developed to model real-time growth data of non-small cell lung cancer (NSCLC) cells and discern patterns in response to treatment with cisplatin. We show that the cisplatin-sensitive and cisplatin-tolerant NSCLC cells, when co-cultured in the absence or presence of the drug, display dynamic group behavior strategies. Tolerant cells exhibit a 'persister-like' behavior and are attenuated by sensitive cells; they also appear to 'educate' sensitive cells to evade chemotherapy. Further, tolerant cells can switch phenotypes to become sensitive, especially at low cisplatin concentrations. Finally, switching treatment from continuous to an intermittent regimen can attenuate the emergence of tolerant cells, suggesting that intermittent chemotherapy may improve outcomes in lung cancer.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Modelos Biológicos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismoRESUMO
As the US transitions from volume- to value-based cancer care, many cancer centers and community groups have joined to share resources to deliver measurable, high-quality cancer care and clinical research with the associated high patient satisfaction, provider satisfaction, and practice health at optimal costs that are the hallmarks of value-based care. Multidisciplinary oncology care pathways are essential components of value-based care and their payment metrics. Oncology pathways are evidence-based, standardized but personalizable care plans to guide cancer care. Pathways have been developed and studied for the major medical, surgical, radiation, and supportive oncology disciplines to support decision-making, streamline care, and optimize outcomes. Implementing multidisciplinary oncology pathways can facilitate comprehensive care plans for each cancer patient throughout their cancer journey and across large multisite delivery systems. Outcomes from the delivered pathway-based care can then be evaluated against individual and population benchmarks. The complexity of adoption, implementation, and assessment of multidisciplinary oncology pathways, however, presents many challenges. We review the development and components of value-based cancer care and detail City of Hope's (COH) academic and community-team-based approaches for implementing multidisciplinary pathways. We also describe supportive components with available results towards enterprise-wide value-based care delivery.
RESUMO
Protein phosphatase 2A (PP2A), a serine/threonine phosphatase involved in the regulation of apoptosis, proliferation, and DNA-damage response, is overexpressed in many cancers, including small cell lung cancer (SCLC). Here we report that LB100, a small molecule inhibitor of PP2A, when combined with platinum-based chemotherapy, synergistically elicited an antitumor response both in vitro and in vivo with no apparent toxicity. Using inductively coupled plasma mass spectrometry, we determined quantitatively that sensitization via LB100 was mediated by increased uptake of carboplatin in SCLC cells. Treatment with LB100 alone or in combination resulted in inhibition of cell viability in two-dimensional culture and three-dimensional spheroid models of SCLC, reduced glucose uptake, and attenuated mitochondrial and glycolytic ATP production. Combining LB100 with atezolizumab increased the capacity of T cells to infiltrate and kill tumor spheroids, and combining LB100 with carboplatin caused hyperphosphorylation of the DNA repair marker γH2AX and enhanced apoptosis while attenuating MET signaling and invasion through an endothelial cell monolayer. Taken together, these data highlight the translational potential of inhibiting PP2A with LB100 in combination with platinum-based chemotherapy and immunotherapy in SCLC.
Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Piperazinas/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Carcinoma de Pequenas Células do Pulmão/enzimologia , Carcinoma de Pequenas Células do Pulmão/patologia , Células Tumorais CultivadasRESUMO
Small cell lung cancer (SCLC) is an aggressive, complex disease with a distinct biology that contributes to its poor prognosis. Management of SCLC is still widely limited to chemotherapy and radiation therapy, and research recruitment still poses a considerable challenge. Here, we review the current standard of care for SCLC and advances made in utilizing immunotherapy. We also highlight research in the development of targeted therapies and emphasize the importance of a team-based approach to make clinical advances. Building an integrative network between an academic site and community practice sites optimizes biomarker and drug target discovery for managing and treating a difficult disease like SCLC.
RESUMO
Introduction: Focal adhesion kinase (FAK) is a promising target for the treatment of solid tumors because its expression has been linked to tumor progression, invasion, and drug resistance. Several FAK inhibitors have been developed and tested for efficacy in treating advanced cancers. Four FAK inhibitors have shown promising preclinical data and have advanced to clinical development in solid tumors.Areas covered: This article provides a systematic review on FAK inhibitors that have been tested or are currently in clinical trials in advanced solid tumors. We discuss the efficacy of GSK2256098, PF-00562271, VS-6063, and BI 853520 in the preclinical setting and summarize the results of phase I/II clinical trials evaluating these compounds.Expert opinion: The FAK inhibitors examined in clinical trials thus far have been shown to have manageable toxicity profiles and have demonstrated cytostatic effects as single agents, extending progression-free survival without producing a clinical or radiographic response. Trials are currently underway to strengthen the efficacy of treatment by combining FAK inhibitors with cytotoxic chemotherapy, targeted therapy, or immunotherapy. In the future, prognostic markers must be identified to carefully select patients who could benefit from FAK inhibitor treatment alone or in combination strategies.
Assuntos
Antineoplásicos/uso terapêutico , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Humanos , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
First discovered in the 1984, the MET receptor tyrosine kinase (RTK) and its ligand hepatocyte growth factor or HGF (also known as scatter factor or SF) are implicated as key players in tumor cell migration, proliferation, and invasion in a variety of cancers. This pathway also plays a key role during embryogenesis in the development of muscular and nervous structures. High expression of the MET receptor has been shown to correlate with poor prognosis and resistance to therapy. MET exon 14 splicing variants, initially identified by us in lung cancer, is actionable through various tyrosine kinase inhibitors (TKIs). For this reason, this pathway is of interest as a therapeutic target. In this chapter we will be discussing the history of MET, the genetics of this RTK, and give some background on the receptor biology. Furthermore, we will discuss directed therapeutics, mechanisms of resistance, and the future of MET as a therapeutic target.
Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Animais , Humanos , Terapia de Alvo Molecular , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto , Transdução de SinaisRESUMO
The tyrosine kinase receptor ephrin receptor A2 (EPHA2) is overexpressed in lung (LSCC) and head and neck (HNSCC) squamous cell carcinomas. Although EPHA2 can inhibit tumorigenesis in a ligand-dependent fashion via phosphorylation of Y588 and Y772, it can promote tumorigenesis in a ligand-independent manner via phosphorylation of S897. Here, we show that EPHA2 and Roundabout Guidance Receptor 1 (ROBO1) interact to form a functional heterodimer. Furthermore, we show that the ROBO1 ligand Slit Guidance Ligand 2 (SLIT2) and ensartinib, an inhibitor of EPHA2, can attenuate growth of HNSCC cells and act synergistically in LSCC cells. Our results suggest that patients with LSCC and HNSCC may be stratified and treated based on their EPHA2 and ROBO1 expression patterns. Although ~73% of patients with LSCC could benefit from SLIT2+ensartinib treatment, ~41% of patients with HNSCC could be treated with either SLIT2 or ensartinib. Thus, EPHA2 and ROBO1 represent potential LSCC and HNSCC theranostics.
RESUMO
The posttranslational modification of proteins by ubiquitinating enzymes plays a central role in a number of cellular functions, such as cell proteolysis, DNA repair, and cell signaling and communication. Deubiquitinating enzymes (DUBs) disassemble ubiquitin chains and remove ubiquitin moieties from proteins. Targeting DUBs in cancer models has revealed an important role for these enzymes in tumorigenesis, and they therefore have emerged as attractive therapeutic targets. In the present study, the effects of three DUB inhibitors, PR619, RA9 and LDN91946, on a nonsmall cell lung cancer cell line (A549) and a mesothelioma cell line (H2373) were investigated. PR619 significantly inhibited cell adhesion and the proliferation of both cell lines. RA9 exerted an inhibitory effect on the adhesion and proliferation of H2373 cells, whereas it had no effect on A549 cells. Notably, however, while PR619 attenuated the proliferation of both cell lines, it exerted an opposite effect on cell motility; in the case of A549 cells, there was a significant increase in cell motility, while for the H2373 cells, there was a significant decrease. Furthermore, protein phosphorylation kinetic analyses revealed that the effects were cell linespecific. In H2373 cells, the phosphorylation of only one peptide corresponding to the P85A protein was significantly affected, and while LDN91946 treatment increased phosphorylation, treatment with RA9 or PR619 decreased its phosphorylation compared to the DMSO control. By contrast, in the case of A549 cells, the phosphorylation of 21 peptides was significantly affected by the same compounds. In light of the potential for the negative sideeffects of DUB inhibition, such as increased cancer cell motility, the data presented herein underscore the dire need for the development of specific DUB inhibitors and to elucidate the individual role of DUB family members in cancer biology before they can be specifically pharmacologically targeted.
Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Enzimas Desubiquitinantes/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Enzimas Desubiquitinantes/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacosRESUMO
[This corrects the article DOI: 10.1016/j.isci.2020.101496.].
RESUMO
Tumor heterogeneity and cisplatin resistance are major causes of tumor relapse and poor survival. Here, we show that in lung cancer, interaction between paxillin (PXN) and integrin ß4 (ITGB4), components of the focal adhesion (FA) complex, contributes to cisplatin resistance. Knocking down PXN and ITGB4 attenuated cell growth and improved cisplatin sensitivity, both in 2D and 3D cultures. PXN and ITGB4 independently regulated expression of several genes. In addition, they also regulated expression of common genes including USP1 and VDAC1, which are required for maintaining genomic stability and mitochondrial function, respectively. Mathematical modeling suggested that bistability could lead to stochastic phenotypic switching between cisplatin-sensitive and resistant states in these cells. Consistently, purified subpopulations of sensitive and resistant cells re-created the mixed parental population when cultured separately. Altogether, these data point to an unexpected role of the FA complex in cisplatin resistance and highlight a novel non-genetic mechanism.
RESUMO
Oncogenic (mutant) Ras protein Kirsten rat sarcoma viral oncogene homolog (KRAS) promotes uncontrolled proliferation, altered metabolism, and loss of genome integrity in a cell-intrinsic manner. Here, we demonstrate that CD4+ T cells when incubated with tumor-derived exosomes from mutant (MT) KRAS non-small-cell lung cancer (NSCLC) cells, patient sera, or a mouse xenograft model, induce phenotypic conversion to FOXP3+ Treg-like cells that are immune-suppressive. Furthermore, transfecting T cells with MT KRAS cDNA alone induced phenotypic switching and mathematical modeling supported this conclusion. Single-cell sequencing identified the interferon pathway as the mechanism underlying the phenotypic switch. These observations highlight a novel cytokine-independent, cell-extrinsic role for KRAS in T cell phenotypic switching. Thus, targeting this new class of Tregs represents a unique therapeutic approach for NSCLC. Since KRAS is the most frequently mutated oncogene in a wide variety of cancers, the findings of this investigation are likely to be of broad interest and have a large scientific impact.
RESUMO
Heuristics and the application of fast-and-frugal trees may play a role in establishing a clinical decision-making framework for value-based oncology. We determined whether clinical decision-making in oncology can be structured heuristically based on the timeline of the patient's treatment, clinical intuition, and evidence-based medicine. A group of 20 patients with advanced non-small cell lung cancer (NSCLC) were enrolled into the study for extensive treatment analysis and sequential decision-making. The extensive clinical and genomic data allowed us to evaluate the methodology and efficacy of fast-and-frugal trees as a way to quantify clinical decision-making. The results of the small cohort will be used to further advance the heuristic framework as a way of evaluating a large number of patients within registries. Among the cohort whose data was analyzed, substitution and amplification mutations occurred most frequently. The top five most prevalent genomic alterations were TP53 (45%), ALK (40%), LRP1B (30%), CDKN2A (25%), and MYC (25%). These 20 cases were analyzed by this clinical decision-making process and separated into two distinctions: 10 straightforward cases that represented a clearer decision-making path and 10 complex cases that represented a more intricate treatment pathway. The myriad of information from each case and their distinct pathways was applied to create the foundation of a framework for lung cancer decision-making as an aid for oncologists. In late-stage lung cancer patients, the fast-and-frugal heuristics can be utilized as a strategy of quantifying proper decision-making with limited information.
RESUMO
Lung cancer is a devastating disease with overall bleak prognosis. Current methods to diagnose lung cancer are rather invasive and are inadequate to detect the disease at an early stage when treatment is likely to be most effective. In this study, a shotgun sequencing approach was used to study the microRNA (miRNA) cargo of serum-derived exosomes of small cell lung cancer (SCLC) (n=9) and non-small cell lung cancer (NSCLC) (n=11) patients, and healthy controls (n=10). The study has identified 17 miRNA species that are differentially expressed in cancer patients and control subjects. Furthermore, within the patient groups, a set of miRNAs were differentially expressed in exosomal samples obtained before and after chemotherapy treatment. This manuscript demonstrates the potential of exosomal miRNAs for developing noninvasive tests for disease differentiation and treatment monitoring in lung cancer patients.