Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Hum Genet ; 110(2): 215-227, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586412

RESUMO

Neurodevelopmental disorders (NDDs) result from highly penetrant variation in hundreds of different genes, some of which have not yet been identified. Using the MatchMaker Exchange, we assembled a cohort of 27 individuals with rare, protein-altering variation in the transcriptional coregulator ZMYM3, located on the X chromosome. Most (n = 24) individuals were males, 17 of which have a maternally inherited variant; six individuals (4 male, 2 female) harbor de novo variants. Overlapping features included developmental delay, intellectual disability, behavioral abnormalities, and a specific facial gestalt in a subset of males. Variants in almost all individuals (n = 26) are missense, including six that recurrently affect two residues. Four unrelated probands were identified with inherited variation affecting Arg441, a site at which variation has been previously seen in NDD-affected siblings, and two individuals have de novo variation resulting in p.Arg1294Cys (c.3880C>T). All variants affect evolutionarily conserved sites, and most are predicted to damage protein structure or function. ZMYM3 is relatively intolerant to variation in the general population, is widely expressed across human tissues, and encodes a component of the KDM1A-RCOR1 chromatin-modifying complex. ChIP-seq experiments on one variant, p.Arg1274Trp, indicate dramatically reduced genomic occupancy, supporting a hypomorphic effect. While we are unable to perform statistical evaluations to definitively support a causative role for variation in ZMYM3, the totality of the evidence, including 27 affected individuals, recurrent variation at two codons, overlapping phenotypic features, protein-modeling data, evolutionary constraint, and experimentally confirmed functional effects strongly support ZMYM3 as an NDD-associated gene.


Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Humanos , Masculino , Feminino , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Fenótipo , Regulação da Expressão Gênica , Face , Proteínas Nucleares/genética , Histona Desmetilases/genética
2.
Genet Med ; 25(7): 100839, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37057675

RESUMO

PURPOSE: LHX2 encodes the LIM homeobox 2 transcription factor (LHX2), which is highly expressed in brain and well conserved across species, but it has not been clearly linked to neurodevelopmental disorders (NDDs) to date. METHODS: Through international collaboration, we identified 19 individuals from 18 families with variable neurodevelopmental phenotypes, carrying a small chromosomal deletion, likely gene-disrupting or missense variants in LHX2. Functional consequences of missense variants were investigated in cellular systems. RESULTS: Affected individuals presented with developmental and/or behavioral abnormalities, autism spectrum disorder, variable intellectual disability, and microcephaly. We observed nucleolar accumulation for 2 missense variants located within the DNA-binding HOX domain, impaired interaction with co-factor LDB1 for another variant located in the protein-protein interaction-mediating LIM domain, and impaired transcriptional activation by luciferase assay for 4 missense variants. CONCLUSION: We implicate LHX2 haploinsufficiency by deletion and likely gene-disrupting variants as causative for a variable NDD. Our findings suggest a loss-of-function mechanism also for likely pathogenic LHX2 missense variants. Together, our observations underscore the importance of LHX2 in the nervous system and for variable neurodevelopmental phenotypes.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Proteínas com Homeodomínio LIM/genética , Transtorno do Espectro Autista/genética , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/patologia , Fatores de Transcrição/genética , Deficiência Intelectual/genética , Deficiência Intelectual/complicações
3.
Am J Med Genet A ; 185(9): 2829-2845, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34056834

RESUMO

Mosaic KRAS variants and other RASopathy genes cause oculoectodermal, encephalo-cranio-cutaneous lipomatosis, and Schimmelpenning-Feuerstein-Mims syndromes, and a spectrum of vascular malformations, overgrowth and other associated anomalies, the latter of which are only recently being characterized. We describe eight individuals in total (six unreported cases and two previously reported cases) with somatic KRAS variants and variably associated features. Given the findings of somatic overgrowth (in seven individuals) and vascular or lymphatic malformations (in eight individuals), we suggest mosaic RASopathies (mosaic KRAS variants) be considered in the differential diagnosis for individuals presenting with asymmetric overgrowth and lymphatic or vascular anomalies. We expand the association with embryonal tumors, including the third report of embryonal rhabdomyosarcoma, as well as novel findings of Wilms tumor and nephroblastomatosis in two individuals. Rare or novel findings in our series include the presence of epilepsy, polycystic kidneys, and T-cell deficiency in one individual, and multifocal lytic bone lesions in two individuals. Finally, we describe the first use of targeted therapy with a MEK inhibitor for an individual with a mosaic KRAS variant. The purposes of this report are to expand the phenotypic spectrum of mosaic KRAS-related disorders, and to propose possible mechanisms of pathogenesis, and surveillance of its associated findings.


Assuntos
Anormalidades Múltiplas/patologia , Neoplasias Renais/patologia , Mosaicismo , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Malformações Vasculares/patologia , Tumor de Wilms/patologia , Anormalidades Múltiplas/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Neoplasias Renais/genética , Masculino , Fenótipo , Malformações Vasculares/genética , Tumor de Wilms/genética
4.
HGG Adv ; 5(2): 100273, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38297832

RESUMO

Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 14 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism, reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated an overall milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, and some had alternative symptomatologies with rational biological links to SMC3. Analyses of tumor and model system transcriptomic data and epigenetic data in a subset of cases suggest that SMC3 pLoF variants reduce SMC3 expression but do not strongly support clustering with functional genomic signatures of typical CdLS. Our finding of substantial population-scale LoF intolerance in concert with variable growth and developmental features in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multilayered genomic data paired with careful phenotyping.


Assuntos
Síndrome de Cornélia de Lange , Deficiência Intelectual , Humanos , Proteínas de Ciclo Celular/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Proteínas Cromossômicas não Histona/genética , Síndrome de Cornélia de Lange/genética , Heterozigoto , Deficiência Intelectual/genética , Mutação , Fenótipo
5.
medRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37808847

RESUMO

Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 13 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated a milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, some instead having intriguing symptomatologies with rational biological links to SMC3 including bone marrow failure, acute myeloid leukemia, and Coats retinal vasculopathy. Analyses of transcriptomic and epigenetic data suggest that SMC3 pLoF variants reduce SMC3 expression but do not result in a blood DNA methylation signature clustering with that of CdLS, and that the global transcriptional signature of SMC3 loss is model-dependent. Our finding of substantial population-scale LoF intolerance in concert with variable penetrance in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multi-layered genomic data paired with careful phenotyping.

6.
Case Rep Genet ; 2022: 9393042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663206

RESUMO

We describe the diagnostic odyssey of an eight-year-old female born to consanguineous parents. Our patient presented with global developmental delay, regression, microcephaly, spastic diplegia, and leukodystrophy confirmed on brain magnetic resonance imaging (MRI). She was found on whole exome sequencing (WES) to have dual genetic diagnoses. The first was a homozygous pathogenic HERC2 gene partial deletion of exons 43-45 that causes HERC2-related disorder. The second was a homozygous pathogenic variant (c.836 C > T, p.A279 V) in the SUMF1 gene responsible for multiple sulfatase deficiency. This case highlights some of the challenges in diagnosing consanguineous pediatric populations where standard genetic and metabolic testing may not provide answers. Our case further supports the recent American College of Medical Genetics and Genomics (ACMG) recommendation of WES as a first or second-tier test for patients with developmental delay, particularly in a population where the chances of dual diagnosis is high.

7.
Eye (Lond) ; 36(11): 2088-2093, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34531550

RESUMO

AIMS/PURPOSE: To investigate Leber congenital amaurosis (LCA) patients' expectations, decision-making processes and gene therapy-related concerns. METHODS: Using a qualitative approach, we explored perceptions of gene therapy and clinical trials among individuals with LCA. Young adults with a clinical diagnosis of LCA were recruited through the Ocular Genetics Programme at the Hospital for Sick Children. Semi-structured interviews were conducted with ten patients and analysed following the principles of qualitative description. RESULTS: Study participants were aware of ongoing gene therapy research trials and actively sought information regarding advances in ophthalmology and vision restoration. The majority of participants would enrol or were enrolled in a gene-replacement therapy trial, while a minority was ambivalent or would not enrol if provided an opportunity. Participants attributed different values to clinical trials, which influenced their willingness to participate. Intrinsic factors related to coping, adaptation to vision loss and resilience also influenced decision-making. DISCUSSION: This study highlights the complex factors involved in gene-therapy-related decision-making and acts as a proponent for adopting patient-centred care strategies when counselling individuals considering gene therapy or clinical trial participation.


Assuntos
Amaurose Congênita de Leber , Criança , Humanos , Adulto Jovem , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/terapia , Terapia Genética , Visão Ocular , Cegueira/genética , Cegueira/terapia
8.
Eur J Hum Genet ; 28(10): 1422-1431, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32483341

RESUMO

There has been one previous report of a cohort of patients with variants in Chromodomain Helicase DNA-binding 3 (CHD3), now recognized as Snijders Blok-Campeau syndrome. However, with only three previously-reported patients with variants outside the ATPase/helicase domain, it was unclear if variants outside of this domain caused a clinically similar phenotype. We have analyzed 24 new patients with CHD3 variants, including nine outside the ATPase/helicase domain. All patients were detected with unbiased molecular genetic methods. There is not a significant difference in the clinical or facial features of patients with variants in or outside this domain. These additional patients further expand the clinical and molecular data associated with CHD3 variants. Importantly we conclude that there is not a significant difference in the phenotypic features of patients with various molecular disruptions, including whole gene deletions and duplications, and missense variants outside the ATPase/helicase domain. This data will aid both clinical geneticists and molecular geneticists in the diagnosis of this emerging syndrome.


Assuntos
Anormalidades Craniofaciais/genética , DNA Helicases/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Adolescente , Adulto , Domínio Catalítico , Criança , Pré-Escolar , Anormalidades Craniofaciais/patologia , DNA Helicases/química , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/química , Mutação , Fenótipo , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA