RESUMO
BACKGROUND: Neuroendocrine neoplasms (NENs) represent a heterogeneous class of rare tumors with increasing incidence. They are characterized by the ability to secrete peptide hormones and biogenic amines but other reliable biomarkers are lacking, making diagnosis and identification of the primary site very challenging. While in some NENs, such as the pancreatic ones, next generation sequencing technologies allowed the identification of new molecular hallmarks, our knowledge of the molecular profile of NENs from other anatomical sites is still poor. METHODS: Starting from the concept that NENs from different organs may be clinically and genetically correlated, we applied a multi-omics approach by combining multigene panel testing, CGH-array, transcriptome and miRNome profiling and computational analyses, with the aim to highlight common molecular and functional signatures of gastroenteropancreatic (GEP)-NENs and medullary thyroid carcinomas (MTCs) that could aid diagnosis, prognosis and therapy. RESULTS: By comparing genomic and transcriptional profiles, ATM-dependent signaling emerged among the most significant pathways at multiple levels, involving gene variations and miRNA-mediated regulation, thus representing a novel putative druggable pathway in these cancer types. Moreover, a set of circulating miRNAs was also selected as possible diagnostic/prognostic biomarkers useful for clinical management of NENs. CONCLUSIONS: These findings depict a complex molecular and functional landscape of NENs, shedding light on novel therapeutic targets and disease biomarkers to be exploited.
Assuntos
Carcinoma Neuroendócrino , Neoplasias Gastrointestinais , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Carcinoma Neuroendócrino/genética , Neoplasias Gastrointestinais/diagnóstico , Neoplasias Gastrointestinais/epidemiologia , Neoplasias Gastrointestinais/genética , Humanos , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Neoplasias Pancreáticas/patologia , PrognósticoRESUMO
Growing evidence suggests that trimethylamine N-oxide (TMAO) is recognized as a biomarker of increased cardiovascular risk. So far, the evaluation of TMAO serum levels in the clinical practice is limited due to the lack of developing new facile methods with reduced limitations. However, few approaches were achieved to determine TMAO in serum by using mass spectrometry-based technique, some limitations were reported including the use of internal standards. Therefore, in this work, a liquid chromatography-mass spectrometry (LC/MS) based-assay was developed to evaluate the effect of grape pomace extract (Taurisolo®, group A) or Taurisolo®+pectin (group B) on TMAO serum levels in a cohort of overweight/obese subjects. The serum levels of TMAO have been assessed before and after treatment, through LC/MS analysis. After 8-week treatment, in both intervention groups TMAO serum levels significantly decreased (-78.58% p = 0.006 and -76.76% p = 0.001, group A and group B, respectively). Moreover, we performed several analyses aimed to validate the LC/MS method we used. The method has high precision (% C.V = from 12.12 to 3.92% and from 8.25 to 1.07% for intraday and interday, respectively) and accuracy (% bias = from -5.52 to 0.5% and from -1.42 to 3.08% for intraday and interday, respectively). TMAO recoveries from serum ranged from 99 to 97%; LOD: 2 ng/ml and LOQ: 6 ng/ml. In conclusion, we demonstrated the efficacy of a novel nutraceutical formulation in reducing TMAO serum levels in high cardiovascular risk-subjects, and proposed a useful, versatile and rapid LC/MS method for identification and quantization of TMAO, without the use of marked/isotopic internal standards. It, thus, may represent a novel and practical method with applications in clinical practice and nutraceutical research. Clinical Trial Registration: This study is listed on the ISRCTN registry with ID ISRCTN10794277 (doi: 10.1186/ISRCTN10794277).
RESUMO
Trimethylamine N-oxide (TMAO) is considered a novel risk factor for cardiovascular diseases. Several studies demonstrated that polyphenols are able to inhibit the growth of TMA-producing bacterial strains, and resveratrol (RSV) reduced TMAO levels in mice. In the present study, we evaluated the TMAO-reducing effect of a novel nutraceutical formulation containing grape pomace extract in humans (Taurisolo®). The Taurisolo® polyphenol content was evaluated by a High Performance Liquid Chromatography-diode-array detector (HPLC-DAD) method, and RSV was monitored as an indicative marker. After in vitro GI digestion, intestinal bioaccessibility of RSV was 92.3%. A randomized, placebo-controlled, cross-over trial was carried out to evaluate the TMAO-reducing effect of Taurisolo®. In acute, the maximum levels of RSV were detected both in serum and whole blood 60 min after the administration of Taurisolo®; in chronic, a significant increase of RSV was detected in serum after the 4-week treatment. After 4 weeks, the levels of TMAO were significantly decreased in the treatment group compared to placebo (63.6% vs. 0.54%, respectively, P < 0.0001). In conclusion, our data show that Taurisolo® may represent a novel and useful natural remedy to reduce prognostic markers for incident cardiovascular events. Undoubtedly, further in vitro and in vivo studies need to be performed in order to elucidate possible mechanisms of action and corroborate our preliminary results.
Assuntos
Bactérias/efeitos dos fármacos , Doenças Cardiovasculares/sangue , Suplementos Nutricionais , Metilaminas/sangue , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Vitis/química , Adulto , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Masculino , Microbiota , Extratos Vegetais/uso terapêutico , Polifenóis/análise , Resveratrol/sangueRESUMO
The beneficial effects of the tea beverage are well-known and mainly attributed to polyphenols which, however, have poor bioaccessibility and bioavailability. The purpose of the present study was the evaluation of colon bioaccessibility and antioxidant activity of tea polyphenolic extract. An 80% methanolic extract (v/v) of tea polyphenols was obtained from green (GT), white (WT) and black tea (BT). Simulated gastrointestinal (GI) digestion was performed on acid-resistant capsules containing tea polyphenolic extract. The main tea polyphenols were monitored by HPLC-diode-array detector (DAD) method; in addition, Total Phenol Content (TPC) and antioxidant activity were evaluated. After GI digestion, the bioaccessibility in the colon stage was significantly increased compared to the duodenal stage for both tea polyphenols and TPC. Similarly, the antioxidant activity in the colon stage was significantly higher than that in the duodenal stage. Reasonably, these results could be attributable in vivo to the activity of gut microbiota, which is able to metabolize these compounds, generating metabolites with a greater antioxidant activity. Our results may guide the comprehension of the colon digestion of polyphenols, suggesting that, although poorly absorbed in the duodenum, they can exert their antioxidant and anti-inflammatory activities in the lower gut, resulting in a novel strategy for the management of gut-related inflammatory diseases.
Assuntos
Digestão , Trato Gastrointestinal/fisiologia , Polifenóis/farmacocinética , Chá/química , Disponibilidade Biológica , Camellia sinensis/química , Humanos , Polifenóis/químicaRESUMO
The herpes simplex virus (HSV) is a common human virus affecting many people worldwide. HSV infections manifest with lesions that occur in different parts of the body, including oral, ocular, nasal, and genital skin and mucosa. In rare cases, HSV infections can be serious and lethal. Several anti-HSV drugs have been developed, but the existence of mutant viruses resistant to these drugs led to the individuation of novel antiviral agents. Plant-derived bioactive compounds, and more specifically polyphenols, have been demonstrated to exert marked anti-HSV activity and, among these, resveratrol (RSV) would be considered a good candidate. The purpose of this manuscript is to review the available literature elucidating the efficacy of RSV against HSV and the main demonstrated mechanisms of action.
Assuntos
Antivirais/administração & dosagem , Antivirais/farmacologia , Suplementos Nutricionais , Herpes Simples/tratamento farmacológico , Simplexvirus/efeitos dos fármacos , Estilbenos/administração & dosagem , Estilbenos/farmacologia , Animais , Modelos Animais de Doenças , Humanos , Resveratrol , Resultado do TratamentoRESUMO
Doxorubicin is a highly active antineoplastic agent, but its clinical use is limited because of its cardiotoxicity. Although nutraceuticals endowed with anti-inflammatory properties exert cardioprotective activity, their bioavailability and stability are inconsistent. In an attempt to address this issue, we evaluated whether bioavailable nanoemulsions loaded with nutraceuticals (curcumin and fresh and dry tomato extracts rich in lycopene) protect cardiomyoblasts (H9C2 cells) from doxorubicin-induced toxicity. Nanoemulsions were produced with a high-pressure homogenizer. H9C2 cells were incubated with nanoemulsions loaded with different nutraceuticals alone or in combination with doxorubicin. Cell viability was evaluated with a modified MTT method. The levels of the lipid peroxidation products malondialdehyde (MDA) and 4-hydroxy-2-butanone (4-HNA), and of the cardiotoxic-related interleukins IL-6, IL-8, IL-1ß and IL-10, tumor necrosis factor-alpha (TNF-α), and nitric oxide were analyzed in cardiomyoblasts. The hydrodynamic size of nanoemulsions was around 100 nm. Cell viability enhancement was 35â»40% higher in cardiomyoblasts treated with nanoemulsion + doxorubicin than in cardiomyoblasts treated with doxorubicin alone. Nanoemulsions also protected against oxidative stress as witnessed by a reduction of MDA and 4-HNA. Notably, nanoemulsions inhibited the release of IL-6, IL-8, IL-1ß, TNF-α and nitric oxide by around 35â»40% and increased IL-10 production by 25â»27% versus cells not treated with emulsions. Of the nutraceuticals evaluated, lycopene-rich nanoemulsions had the best cardioprotective profile. In conclusion, nanoemulsions loaded with the nutraceuticals described herein protect against cardiotoxicity, by reducing inflammation and lipid oxidative stress. These results set the stage for studies in preclinical models.