Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 90: 58-67, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26550693

RESUMO

Mitochondria are double membrane-bounded organelles residing in the cytoplasm of almost all eukaryotic cells, which convert energy from the disposal of organic substrates into an electrochemical gradient that is in turn converted into ATP. However, the ion gradient that is generated through the oxidation of nutrients, may lead to the production of reactive oxygen species (ROS), which can generate free radicals, damaging cells and contributing to disease. Originally described as static structures, to date they are considered extremely plastic and dynamic organelles. In this respect, mitochondrial dynamics is crucial to prevent potential damage that is generated by ROS. For instance, mitochondria elongate to dilute oxidized proteins into the mitochondrial network, and they fragment to allow selective elimination of dysfunctional mitochondria via mitophagy. Accordingly, mitochondrial dynamics perturbation may compromise the selective elimination of damaged proteins and dysfunctional organelles and lead to the development of different diseases including neurodegenerative diseases. In recent years the fruit fly Drosophila melanogaster has proved to be a valuable model system to evaluate the consequences of mitochondria quality control dysfunction in vivo, particularly with respect to PINK1/Parkin dependent dysregulation of mitophagy in the onset of Parkinson's Disease (PD). The current challenge is to be able to use fly based genetic strategies to gain further insights into molecular mechanisms underlying disease in order to develop new therapeutic strategies. This article is part of a Special Issue entitled: Role of mitochondria in physiological and pathophysiological functions in the central nervous system.


Assuntos
Dinâmica Mitocondrial/fisiologia , Mitofagia/fisiologia , Transtornos Parkinsonianos/metabolismo , Animais , Drosophila melanogaster , Humanos , Dinâmica Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico
2.
Cell Death Differ ; 31(2): 217-238, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38238520

RESUMO

Selective removal of dysfunctional mitochondria via autophagy is crucial for the maintenance of cellular homeostasis. This event is initiated by the translocation of the E3 ubiquitin ligase Parkin to damaged mitochondria, and it requires the Serine/Threonine-protein kinase PINK1. In a coordinated set of events, PINK1 operates upstream of Parkin in a linear pathway that leads to the phosphorylation of Parkin, Ubiquitin, and Parkin mitochondrial substrates, to promote ubiquitination of outer mitochondrial membrane proteins. Ubiquitin-decorated mitochondria are selectively recruiting autophagy receptors, which are required to terminate the organelle via autophagy. In this work, we show a previously uncharacterized molecular pathway that correlates the activation of the Ca2+-dependent phosphatase Calcineurin to Parkin translocation and Parkin-dependent mitophagy. Calcineurin downregulation or genetic inhibition prevents Parkin translocation to CCCP-treated mitochondria and impairs stress-induced mitophagy, whereas Calcineurin activation promotes Parkin mitochondrial recruitment and basal mitophagy. Calcineurin interacts with Parkin, and promotes Parkin translocation in the absence of PINK1, but requires PINK1 expression to execute mitophagy in MEF cells. Genetic activation of Calcineurin in vivo boosts basal mitophagy in neurons and corrects locomotor dysfunction and mitochondrial respiratory defects of a Drosophila model of impaired mitochondrial functions. Our study identifies Calcineurin as a novel key player in the regulation of Parkin translocation and mitophagy.


Assuntos
Calcineurina , Proteínas de Drosophila , Animais , Calcineurina/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Mitofagia/genética , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Drosophila/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
3.
Cell Chem Biol ; 27(9): 1164-1180.e5, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32668203

RESUMO

The affinity-directed protein missile (AdPROM) system utilizes specific polypeptide binders of intracellular proteins of interest (POIs) conjugated to an E3 ubiquitin ligase moiety to enable targeted proteolysis of the POI. However, a chemically tuneable AdPROM system is more desirable. Here, we use Halo-tag/VHL-recruiting proteolysis-targeting chimera (HaloPROTAC) technology to develop a ligand-inducible AdPROM (L-AdPROM) system. When we express an L-AdPROM construct consisting of an anti-GFP nanobody conjugated to the Halo-tag, we achieve robust degradation of GFP-tagged POIs only upon treatment of cells with the HaloPROTAC. For GFP-tagged POIs, ULK1, FAM83D, and SGK3 were knocked in with a GFP-tag using CRISPR/Cas9. By substituting the anti-GFP nanobody for a monobody that binds H- and K-RAS, we achieve robust degradation of unmodified endogenous RAS proteins only in the presence of the HaloPROTAC. Through substitution of the polypeptide binder, the highly versatile L-AdPROM system is useful for the inducible degradation of potentially any intracellular POI.


Assuntos
Proteólise , Anticorpos de Cadeia Única/metabolismo , Marcadores de Afinidade , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Técnicas de Introdução de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Ubiquitinação , Proteínas ras/metabolismo
4.
Curr Neuropharmacol ; 14(3): 250-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26517048

RESUMO

Parkinson's Disease (PD) related genes PINK1, a protein kinase [1], and Parkin, an E3 ubiquitin ligase [2], operate within the same pathway [3-5], which controls, via specific elimination of dysfunctional mitochondria, the quality of the organelle network [6]. Parkin translocates to impaired mitochondria and drives their elimination via autophagy, a process known as mitophagy [6]. PINK1 regulates Parkin translocation through a not yet completely understood mechanism [7, 8]. Mitochondrial outer membrane proteins Mitofusin (MFN), VDAC, Fis1 and TOM20 were found to be targets for Parkin mediated ubiquitination [9-11]. By adding ubiquitin molecules to its targets expressed on mitochondria, Parkin tags and selects dysfunctional mitochondria for clearance, contributing to maintain a functional and healthy mitochondrial network. Abnormal accumulation of misfolded proteins and unfunctional mitochondria is a characteristic hallmark of PD pathology. Therefore a therapeutic approach to enhance clearance of misfolded proteins and potentiate the ubiquitin-proteosome system (UPS) could be instrumental to ameliorate the progression of the disease. Recently, much effort has been put to identify specific de-ubiquitinating enzymes (DUBs) that oppose Parkin in the ubiquitination of its targets. Similar to other post-translational modifications, such as phosphorylation and acetylation, ubiquitination is also a reversible modification, mediated by a large family of DUBs [12]. DUBs inhibitors or activators can affect cellular response to stimuli that induce mitophagy via ubiquitination of mitochondrial outer membrane proteins MFN, VDAC, Fis1 and TOM20. In this respect, the identification of a Parkin-opposing DUB in the regulation of mitophagy, might be instrumental to develop specific isopeptidase inhibitors or activators that can modulate the fundamental biological process of mitochondria clearance and impact on cell survival.


Assuntos
Mitofagia/genética , Doença de Parkinson/genética , Doença de Parkinson/terapia , Proteínas Quinases/deficiência , Ubiquitina-Proteína Ligases/deficiência , Animais , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Humanos , Mitofagia/efeitos dos fármacos , Proteínas Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA